我遇到以下问题。当我设置具有 5 个通道的 DMA 的 ADC 时,我得到的读数低于预期。
我们在3个国家都有同批次的PCB,但只有中国测试不合格。在任何时候,ADC 读数都低于所有 ADC 通道的预期值,但其他国家/地区的 PCB 返回所有通道中的预期读数。所有这些 PCB 都是相同的,它们驱动小型电机,有一个键盘,有一些 LED UI,以及一个 UART 调试端口(如果我们连接 USB 到 TTL UART 电缆)。
我们测量了 ADC 输入引脚上的参考电压和所有预期电压(有些电压是固定且已知的),看起来也都不错。另一方面,当我在轮询模式下仅对一个 ADC 通道进行采样时,我没有遇到此问题,电压读取符合预期。
例如:健康 ADC 在 10 位分辨率下的读数应为 914 原始值,对应于 3652mV 的电池电压,而不是较低的读数,例如 837 原始值,对应于电池电压 3346mV。
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file adc.c
* @brief This file provides code for the configuration
* of the ADC instances.
******************************************************************************
* @attention
*
* Copyright (c) 2023 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "adc.h"
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
/* ADC1 init function */
void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV10;
hadc1.Init.Resolution = ADC_RESOLUTION_10B;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc1.Init.EOCSelection = ADC_EOC_SEQ_CONV;
hadc1.Init.LowPowerAutoWait = ENABLE;
hadc1.Init.LowPowerAutoPowerOff = ENABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.NbrOfConversion = 5;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.DMAContinuousRequests = ENABLE;
hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
hadc1.Init.SamplingTimeCommon1 = ADC_SAMPLETIME_160CYCLES_5;
hadc1.Init.SamplingTimeCommon2 = ADC_SAMPLETIME_160CYCLES_5;
hadc1.Init.OversamplingMode = DISABLE;
hadc1.Init.TriggerFrequencyMode = ADC_TRIGGER_FREQ_LOW;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLINGTIME_COMMON_1;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_1;
sConfig.Rank = ADC_REGULAR_RANK_2;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_2;
sConfig.Rank = ADC_REGULAR_RANK_3;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_3;
sConfig.Rank = ADC_REGULAR_RANK_4;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
sConfig.Rank = ADC_REGULAR_RANK_5;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
void HAL_ADC_MspInit(ADC_HandleTypeDef* adcHandle)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
if(adcHandle->Instance==ADC1)
{
/* USER CODE BEGIN ADC1_MspInit 0 */
/* USER CODE END ADC1_MspInit 0 */
/** Initializes the peripherals clocks
*/
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_SYSCLK;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
/* ADC1 clock enable */
__HAL_RCC_ADC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**ADC1 GPIO Configuration
PA0 ------> ADC1_IN0
PA1 ------> ADC1_IN1
PA2 ------> ADC1_IN2
PA3 ------> ADC1_IN3
*/
GPIO_InitStruct.Pin = V_BAT_IN_Pin|I_BAT_IN_Pin|VARIANT_ID_Pin|BOARD_ID_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* ADC1 DMA Init */
/* ADC1 Init */
hdma_adc1.Instance = DMA1_Channel1;
hdma_adc1.Init.Request = DMA_REQUEST_ADC1;
hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
hdma_adc1.Init.Mode = DMA_CIRCULAR;
hdma_adc1.Init.Priority = DMA_PRIORITY_LOW;
if (HAL_DMA_Init(&hdma_adc1) != HAL_OK)
{
Error_Handler();
}
__HAL_LINKDMA(adcHandle,DMA_Handle,hdma_adc1);
/* ADC1 interrupt Init */
HAL_NVIC_SetPriority(ADC1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(ADC1_IRQn);
/* USER CODE BEGIN ADC1_MspInit 1 */
/* USER CODE END ADC1_MspInit 1 */
}
}
void HAL_ADC_MspDeInit(ADC_HandleTypeDef* adcHandle)
{
if(adcHandle->Instance==ADC1)
{
/* USER CODE BEGIN ADC1_MspDeInit 0 */
/* USER CODE END ADC1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_ADC_CLK_DISABLE();
/**ADC1 GPIO Configuration
PA0 ------> ADC1_IN0
PA1 ------> ADC1_IN1
PA2 ------> ADC1_IN2
PA3 ------> ADC1_IN3
*/
HAL_GPIO_DeInit(GPIOA, V_BAT_IN_Pin|I_BAT_IN_Pin|VARIANT_ID_Pin|BOARD_ID_Pin);
/* ADC1 DMA DeInit */
HAL_DMA_DeInit(adcHandle->DMA_Handle);
/* ADC1 interrupt Deinit */
HAL_NVIC_DisableIRQ(ADC1_IRQn);
/* USER CODE BEGIN ADC1_MspDeInit 1 */
/* USER CODE END ADC1_MspDeInit 1 */
}
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file dma.c
* @brief This file provides code for the configuration
* of all the requested memory to memory DMA transfers.
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "dma.h"
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/*----------------------------------------------------------------------------*/
/* Configure DMA */
/*----------------------------------------------------------------------------*/
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/**
* Enable DMA controller clock
*/
void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
}
/* USER CODE BEGIN 2 */
/* USER CODE END 2 */
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file BxADC.c
* @brief Analogue interface with HAL and data conversions
*
******************************************************************************
* @attention
*
* Copyright Statement:
* Copyright (c) Bboxx Ltd 2023
* The copyright in this document, which contains information of a proprietary and confidential nature,
* is vested in Bboxx Limited. The content of this document may not be used for purposes other
* than that for which it has been supplied and may not be reproduced, either wholly or in part,
* nor may it be used by, or its contents divulged to, any other person who so ever without written permission
* of Bboxx Limited.
*
******************************************************************************
*/
/* USER CODE END Header */
//----------------------------------------------------------------------------------------------------------------------
// Includes
//----------------------------------------------------------------------------------------------------------------------
#include <stdbool.h>
#include "adc.h"
#include "stm32g0xx_hal_adc.h"
#include "main.h"
#include "Bboxx.h"
#include "BxMotor.h"
#include "BxADC.h"
#include "BxMessage.h"
#include "BxSerial.h"
//----------------------------------------------------------------------------------------------------------------------
// Defines
//----------------------------------------------------------------------------------------------------------------------
typedef enum {
V_BAT,
I_BAT,
VARIANT_ID,
BOARD_ID,
TEMPERATURE,
NUM_OF_ADC_CH
} ADC_CHS;
//----------------------------------------------------------------------------------------------------------------------
// Variables
//----------------------------------------------------------------------------------------------------------------------
static uint16_t ADCreadings[NUM_OF_ADC_CH];
static uint16_t ADCoffset;
static uint16_t ADCref = ADCREF;
static uint16_t ADCpsuConv = ((ADCREF*(ADCPSUR1+ADCPSUR2))/(ADCMAX*ADCPSUR1)) * RESULTMAG;
static uint16_t ADCiConv = (ADCREF/(ADCIGAIN*ADCISENSER));
extern ADC_HandleTypeDef hadc1;
//----------------------------------------------------------------------------------------------------------------------
// Functions
//----------------------------------------------------------------------------------------------------------------------
void ADC_Initialise(void)
/**
* @brief Initialises all ADC
* @param None
* @retval None
*/
{
HAL_GPIO_WritePin(En3v3A_GPIO_Port, En3v3A_Pin, GPIO_PIN_RESET); // Turn On current amp power
HAL_GPIO_WritePin(En3v3B_GPIO_Port, En3v3B_Pin, GPIO_PIN_RESET); // Turn On IDs (+Motor) power
HAL_ADC_Start_DMA(&hadc1, (uint16_t*)ADCreadings, sizeof(ADCreadings)/sizeof(ADCreadings[V_BAT])); // start ADC conversion
return;
}
void ADC_Calibrate(void)
/**
* @brief Calibrates ADC
* @param None
* @retval None
*/
{
HAL_Delay(2000);
static bool firstTime = true;
// Run once
while (firstTime) {
// Calibrate to a known voltage such as the battery
uint16_t volt = ADC_Get_Voltage();
if (volt > (uint16_t)3750u) {
firstTime = false; // Stop if battery voltage is reached
ADCoffset = ADCreadings[I_BAT]; // Save the run mode current offset
Set_String_Tx_Buffer("calibration done ");
Message_16_Bit_Number(volt);
Set_String_Tx_Buffer(" mV and ");
Message_16_Bit_Number(ADCref);
Set_String_Tx_Buffer(" mV");
Set_String_Tx_Buffer(NEWLINE);
} else {
ADCref++; // Increase gain via adding error to the reference voltage
}
}
}
uint16_t ADC_Remove_Offset(uint16_t RawValue)
/**
* @brief Removes the offset from the ADC circuit
* @param None
* @retval None
*/
{
if(RawValue < ADCoffset)
RawValue =0;
else
RawValue -= ADCoffset;
return RawValue;
}
uint16_t ADC_Convert_Voltage(uint16_t RawValue)
/**
* @brief Converts the Raw ADC data into mM
* @param None
* @retval None
*/
{
uint32_t Result =0;
RawValue =ADC_Remove_Offset(RawValue);
ADCpsuConv = ((ADCref*(ADCPSUR1+ADCPSUR2))/(ADCMAX*ADCPSUR1)) * RESULTMAG;
Result =(ADCpsuConv * RawValue); // scale result
Result =(Result>>ADCVARDIVIDE);
return (uint16_t) Result;
}
uint16_t ADC_Convert_Current(uint16_t RawValue)
/**
* @brief Converts the Raw ADC data into mA
* @param None
* @retval None
*/
{
uint32_t Result =0;
RawValue =ADC_Remove_Offset(RawValue);
ADCiConv = (ADCref/(ADCIGAIN*ADCISENSER));
Result = (ADCiConv * RawValue);
Result =(Result>>ADCVARDIVIDE);
return (uint16_t) Result;
}
uint16_t ADC_Convert_ID(uint16_t RawValue)
/**
* @brief Converts the Raw ADC data into An ID voltage 10*units
* @param None
* @retval None
*/
{
uint16_t Result16 =0; // For Faster calculation
uint32_t Result32 =0; // For higher resolution
RawValue =ADC_Remove_Offset(RawValue); // Needs 32bit calculation
Result32 =(ADCref * RawValue); // scale result
Result16 =(uint16_t)(Result32>>ADCVARDIVIDE); // mV
Result16 += 50; // add 50mV for rounding up
Result16 = Result16/100; // Scale for 10*units
return (uint8_t) Result16;
}
uint16_t ADC_Get_Voltage(void)
/**
* @brief returns the value of the PSU voltage (mV)
* @param None
* @retval None
*/
{
return ADC_Convert_Voltage(ADCreadings[V_BAT]);
}
uint16_t ADC_Get_Current(void)
/**
* @brief returns the current current value (mA)
* @param None
* @retval None
*/
{
return ADC_Convert_Current(ADCreadings[I_BAT]);
}
uint8_t ADC_Get_Variant(void)
/**
* @brief returns the Variant as defined by R68//R70 in 10*units
* @param None
* @retval None
*/
{
return ADC_Convert_ID(ADCreadings[VARIANT_ID]);
}
uint8_t ADC_Get_BoardID(void)
/**
* @brief returns the ID as defined by R67//R71 in 10*units
* @param None
* @retval None
*/
{
return ADC_Convert_ID(ADCreadings[BOARD_ID]);
}
uint16_t ADC_Get_Temperature(void)
/**
* @brief returns the Temp in 100*C
* @param None
* @retval None
*/
{
return ADCreadings[TEMPERATURE];
}
void ADC_Print_Raw(void)
/**
* @brief Prints the Raw ADC data in serial terminal
* @param None
* @retval None
*/
{
Set_String_Tx_Buffer("ADCref== ");
Message_16_Bit_Number(ADCref);
Set_String_Tx_Buffer(NEWLINE);
Set_String_Tx_Buffer("ADCpsuConv== ");
Message_16_Bit_Number(ADCpsuConv);
Set_String_Tx_Buffer(NEWLINE);
Set_String_Tx_Buffer("ADCiConv== ");
Message_16_Bit_Number(ADCiConv);
Set_String_Tx_Buffer(NEWLINE);
Set_String_Tx_Buffer("ADCoffset== ");
Message_16_Bit_Number(ADCoffset);
Set_String_Tx_Buffer(NEWLINE);
Set_String_Tx_Buffer("ADCvoltageRAW== ");
Message_16_Bit_Number(ADCreadings[V_BAT]);
Set_String_Tx_Buffer("\t\tADCvoltage== ");
Message_16_Bit_Number_Formatted(ADC_Get_Voltage(), BareNumber);
Set_String_Tx_Buffer("mV");
Set_String_Tx_Buffer(NEWLINE);
Set_String_Tx_Buffer("ADCcurrentRAW== ");
Message_16_Bit_Number(ADCreadings[I_BAT]);
Set_String_Tx_Buffer("\t\tADCcurrentRAW== ");
Message_16_Bit_Number_Formatted(ADC_Get_Current(), BareNumber);
Set_String_Tx_Buffer("mA");
Set_String_Tx_Buffer(NEWLINE);
Set_String_Tx_Buffer("ADCvariantRAW== ");
Message_16_Bit_Number(ADCreadings[VARIANT_ID]);
Set_String_Tx_Buffer("\t\tADCvariant== ");
Message_16_Bit_Number_Formatted(ADC_Get_Variant(), BareNumber);
Set_String_Tx_Buffer(NEWLINE);
Set_String_Tx_Buffer("ADCboardIDRAW== ");
Message_16_Bit_Number(ADCreadings[BOARD_ID]);
Set_String_Tx_Buffer("\t\tADCboardID== ");
Message_16_Bit_Number_Formatted(ADC_Get_BoardID(), BareNumber);
Set_String_Tx_Buffer(NEWLINE);
Set_String_Tx_Buffer("Temperature== ");
Message_16_Bit_Number_Formatted(ADC_Get_Temperature(), BareNumber);
Set_String_Tx_Buffer(NEWLINE);
Set_String_Tx_Buffer("En3v3A== ");
Message_8_Bit_Number(HAL_GPIO_ReadPin(En3v3A_GPIO_Port, En3v3A_Pin));
Set_String_Tx_Buffer(NEWLINE);
Set_String_Tx_Buffer("En3v3B== ");
Message_8_Bit_Number(HAL_GPIO_ReadPin(En3v3B_GPIO_Port, En3v3B_Pin));
Set_String_Tx_Buffer(NEWLINE);
}
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
//ADC_Print_Raw();
}
//----------------------------------------------------------------------------------------------------------------------
//---------------------------------------------------< end of file >----------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
在ST论坛上通过使用ST HAL校准函数进行偏移和Vrefin通道进行增益解决: https://community.st.com/t5/stm32-mcus-products/stm32-adc-dma-low-raw-Voltage-readings/td-p/655958