DataFrame:如何在第二列中为分位数找到一列中的值

问题描述 投票:2回答:1

我有一个DataFrame,显示日期,偏移和计数。

例如,这是数据帧的开始

df = pd.DataFrame(np.array([['2018-01-01', 0, 1], ['2018-01-01', 26, 2], ['2018-01-01', 178, 8], ['2018-01-01', 187, 10], ['2018-01-01', 197, 13], ['2018-01-01', 208, 15], ['2018-01-01', 219, 16], ['2018-01-01', 224, 19],['2018-01-01', 232, 21], ['2018-01-01', 233, 25], ['2018-01-01', 236, 32],['2018-01-02', 0, 1], ['2018-01-02', 11, 4], ['2018-01-02', 12, 7], ['2018-01-02', 20, 12], ['2018-01-02', 35, 24], ]), columns=['obs_date', 'offset', 'count'])

    obs_date    offset  count
0   2018-01-01  0       1
1   2018-01-01  26      2
2   2018-01-01  178     8
3   2018-01-01  187     10
4   2018-01-01  197     13
5   2018-01-01  208     15
6   2018-01-01  219     16
7   2018-01-01  224     19
8   2018-01-01  232     21
9   2018-01-01  233     25
10  2018-01-01  236     32
11  2018-01-02  0       1
12  2018-01-02  11      4
13  2018-01-02  12      7
14  2018-01-02  20      12
15  2018-01-02  35      24

等等

我想为每个日期得到(累计)['count']分位数[0.25,0.5,0.75],并找到该分位数适用的['offset']行。每个日期的总计数将不同,并且偏移量不是正常的,因此对于2018-01-01,日期和偏移量对应于8,16和24(0.25,0.5,0.75 * 32)的计数

就像是

0   2018-01-01  178     0.25
1   2018-01-01  219     0.5
2   2018-01-01  232.75  0.75
3   2018-01-02  43      0.25
etc     
python pandas quantile
1个回答
1
投票

这对我有用:

df['count'] = df['count'].astype(int)
quantiles = [.25, .5, .75]

def get_offset(x):
    s = x['count']
    indices = [(s.sort_values()[::-1] <= s.quantile(q)).idxmax() for q in quantiles]
    return df.iloc[indices, x.columns.get_loc('offset')]

res = df.groupby('obs_date').apply(get_offset).reset_index(level=0)

然后你可以concat与分位数:

pd.concat([res.reset_index(drop=True), pd.Series(quantiles * df.obs_date.nunique())], axis=1)

    obs_date    offset  0
0   2018-01-01  178     0.25
1   2018-01-01  208     0.50
2   2018-01-01  224     0.75
3   2018-01-02  11      0.25
4   2018-01-02  12      0.50
5   2018-01-02  20      0.75
© www.soinside.com 2019 - 2024. All rights reserved.