我想制作一个氢原子轨道的3D动画。因此,我创建了以下程序。
#Repositorys
import numpy as np
from scipy.special import sph_harm
import matplotlib.pyplot as plt
import matplotlib as matplotlib
from mpl_toolkits.mplot3d import Axes3D
import cmath
#Create Diagramm
fig = plt.figure(figsize = (10,10))
ax = fig.add_subplot(111, projection='3d')
#Variables
l = 0
m = 0
phi = np.linspace(0, np.pi , 150)
theta = phi = np.linspace(0, 2*np.pi , 150)
#Variables for linear combination
l2 = 1
m2 = 0
t = 0
#Calculate linear combination
X = abs(sph_harm(m, l, theta, phi) + sph_harm(m2, l2, theta, phi) * cmath.exp(-t*1j)) * np.outer(np.cos(phi), np.sin(theta))
Y = abs(sph_harm(m, l, theta, phi) + sph_harm(m2, l2, theta, phi) * cmath.exp(-t*1j)) * np.outer(np.sin(phi), np.sin(theta))
Z = abs(sph_harm(m, l, theta, phi) + sph_harm(m2, l2, theta, phi) * cmath.exp(-t*1j)) * np.outer(np.ones(np.size(phi)), np.cos(theta))
ax.plot_surface(X, Y, Z, rstride=4, cstride=4, color='b')
plt.show()
现在我想做一个动画,当时间t从0到2*pi的时候,对象是如何变化的。我如何使用matplotlib来完成这个任务?我试着在教程的帮助下做这个,但是很困惑。谢谢大家的支持。
PS:如果有人哪怕有一个想法,如何用blender渲染这个......你将是我的英雄。
这是很直接的使用 matplotlib.animation.FuncAnimation
-
import numpy as np
from scipy.special import sph_harm
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import FuncAnimation
import cmath
fig = plt.figure(figsize = (7,7))
ax = fig.add_subplot(111, projection='3d')
l = 0
m = 0
l2 = 1
m2 = 0
phi = np.linspace(0, np.pi , 150)
theta = phi = np.linspace(0, 2*np.pi , 150)
surf = ax.plot_surface(np.array([[]]), np.array([[]]), np.array([[]]))
ax.set_xlim([-0.75, 0.75])
ax.set_ylim([-0.75, 0.75])
ax.set_zlim([-0.75, 0.75])
def animate(i):
global surf
t = 2 * np.pi / nframes * i;
X = abs(sph_harm(m, l, theta, phi) + sph_harm(m2, l2, theta, phi) * cmath.exp(-t*1j)) \
* np.outer(np.cos(phi), np.sin(theta))
Y = abs(sph_harm(m, l, theta, phi) + sph_harm(m2, l2, theta, phi) * cmath.exp(-t*1j)) \
* np.outer(np.sin(phi), np.sin(theta))
Z = abs(sph_harm(m, l, theta, phi) + sph_harm(m2, l2, theta, phi) * cmath.exp(-t*1j)) \
* np.outer(np.ones(np.size(phi)), np.cos(theta))
surf.remove()
fig.canvas.draw()
surf = ax.plot_surface(X, Y, Z, rstride=4, cstride=4, color='b')
nframes = 36
anim = FuncAnimation(fig, animate, frames=nframes+1, interval=2000/(nframes+1))
您可以根据需要调整帧数。interval
指定帧与帧之间的间隔,单位是毫秒--我在这里将其缩放,所以动画总是2秒长。