是否有任何研究表明如何为 DeepFace 中的模型选择默认阈值?
def find_threshold(model_name: str, distance_metric: str) -> float:
base_threshold = {"cosine": 0.40, "euclidean": 0.55, "euclidean_l2": 0.75}
thresholds = {
# "VGG-Face": {"cosine": 0.40, "euclidean": 0.60, "euclidean_l2": 0.86}, # 2622d
"VGG-Face": {
"cosine": 0.68,
"euclidean": 1.17,
"euclidean_l2": 1.17,
}, # 4096d - tuned with LFW
"Facenet": {"cosine": 0.40, "euclidean": 10, "euclidean_l2": 0.80},
"Facenet512": {"cosine": 0.30, "euclidean": 23.56, "euclidean_l2": 1.04},
"ArcFace": {"cosine": 0.68, "euclidean": 4.15, "euclidean_l2": 1.13},
"Dlib": {"cosine": 0.07, "euclidean": 0.6, "euclidean_l2": 0.4},
"SFace": {"cosine": 0.593, "euclidean": 10.734, "euclidean_l2": 1.055},
"OpenFace": {"cosine": 0.10, "euclidean": 0.55, "euclidean_l2": 0.55},
"DeepFace": {"cosine": 0.23, "euclidean": 64, "euclidean_l2": 0.64},
"DeepID": {"cosine": 0.015, "euclidean": 45, "euclidean_l2": 0.17},
"GhostFaceNet": {"cosine": 0.65, "euclidean": 35.71, "euclidean_l2": 1.10},
}
threshold = thresholds.get(model_name, base_threshold).get(distance_metric, 0.4)
return threshold
如何在每种场景下选择一个理想的值?这是完全经验主义的东西吗?
我正在测试模型,在某些情况下,检测会产生错误的识别。
根据我自己的经验:是的,这完全是经验性的。