逆CDF变换采样的分布略有错误

问题描述 投票:1回答:1

Background

我需要从具有已知累积分布函数(CDF)的相当复杂的概率密度函数(PDF)中随机抽样,并且我正在尝试使用inverse transform sampling。这应该很容易做到,因为我有CDF,只需要在插入统一的随机数时用数字反转它(不可能用代数做)。但是,由此产生的分布的方差低于预期,我在CDF中找不到任何错误。

所以我通过从正态分布中抽样来简化和测试我的算法。结果是一样的:位置还可以,但规模是错误的。我知道有更好的内置方法用于高斯采样,但这只是对采样算法的测试。

这个问题最初出现在Fortran中,但我已经在Python中复制了这个问题,所以我必须做一些根本错误或有数字问题的事情。

Python

import numpy as np
from scipy.special import erf
from scipy.optimize import brentq
import matplotlib.pyplot as plt
from scipy.stats import norm


def testfunc(x):
    ## Test case, result should be 6.04880103
    # out = 0.5 * (1. + erf((x - 5.) / (2. * np.sqrt(2.)))) - 0.7
    r = np.random.uniform()
    # hand-built cdf:
    # out = 0.5 * (1. + erf((x - 5.) / (2. * np.sqrt(2.)))) - r
    # scipy cdf:
    out = norm.cdf(x, 5, 2) - r
    return out


if __name__ == '__main__':
    n = 10000
    sol_array = np.zeros(n)
    for i in range(0, n):
        sol_array[i] = brentq(testfunc, -100.,100.)

    print('mean = ' + str(np.mean(sol_array)))
    print('std = ' + str(np.std(sol_array)))
    plt.hist(sol_array, normed=True, bins='fd')
    x = np.linspace(-1, 11, 1000)
    plt.plot(x, norm.pdf(x, 5, 2))
    plt.show()

正如预期的那样,采样值的平均值约为5,但标准偏差约为1.28,对于我手工制作的CDF和scipy的CDF,它应该是2。这在直方图中也可见:normal distribution with mean = 5 and standard deviation = 2

Fortran

Fortran中的问题相同,但结果标准差的值不同。代码更长,因为包含了解算器。该解算器是由旧的FORTRAN 77 netlib例程(Alan Miller)的zeroin.f翻译的Fortran 90版本。

implicit none
integer, parameter :: dp = selected_real_kind(15, 307)
integer, parameter :: n = 1000000
real, dimension(n) :: v
real :: mean, std
integer, dimension(:), allocatable :: seed
integer :: i, seedsize, clock

! seed the PRNG
call random_seed(size=seedsize)
allocate(seed(seedsize))
call system_clock(count=clock)
seed=clock + 37 * (/ (i - 1, i=1, seedsize) /)
call random_seed(put=seed)
deallocate(seed)

do i = 1, n
    v(i) = real(zeroin(testfunc, -100._dp, 100._dp, 1e-20_dp, 1e-10_dp))
end do

mean = sum(v) / n
std = sum((v - mean)**2) / n
print*, mean, std

contains

function testfunc(v)
    implicit none
    real(dp), intent(in) :: v
    real(dp) :: testfunc, r

    call random_number(r)

!    testfunc = 0.5 * (1. + erf((v-5.)/(2.*sqrt(2.)))) - 0.7  ! should be 6.04880
    testfunc = 0.5 * (1. + erf((v-5.)/(2.*sqrt(2.)))) - r ! Gaussian test with mu=5 and sigma=2
end function testfunc

function zeroin(f, ax, bx, aerr, rerr) result(fn_val)
! original zeroin.f from netlib.org
! code converted using to_f90 by alan miller
! date: 2003-07-14  time: 12:32:54
!-----------------------------------------------------------------------
!         finding a zero of the function f(x) in the interval (ax,bx)
!                       ------------------------
!  INPUT:
!  f      function subprogram which evaluates f(x) for any x in the
!         closed interval (ax,bx).  it is assumed that f is continuous,
!         and that f(ax) and f(bx) have different signs.
!  ax     left endpoint of the interval
!  bx     right endpoint of the interval
!  aerr   the absolute error tolerance to be satisfied
!  rerr   the relative error tolerance to be satisfied

!  OUTPUT:
!         abcissa approximating a zero of f in the interval (ax,bx)
!-----------------------------------------------------------------------
!  zeroin is a slightly modified translation of the algol procedure
!  zero given by Richard Brent in "Algorithms for Minimization without
!  Derivatives", Prentice-Hall, Inc. (1973).
    implicit none
    real(dp), intent(in)  :: ax
    real(dp), intent(in)  :: bx
    real(dp), intent(in)  :: aerr
    real(dp), intent(in)  :: rerr
    real(dp)              :: fn_val
    real(dp)  :: a, b, c, d, e, eps, fa, fb, fc, tol, xm, p, q, r, s, atol, rtol

    interface
        real(selected_real_kind(15, 307))  function f(x)
            real(selected_real_kind(15, 307)), intent(in) :: x
        end function f
    end interface

    !  compute eps, the relative machine precision
    eps = epsilon(0.0_dp)

    ! initialization
    a = ax
    b = bx
    fa = f(a)
    fb = f(b)
    if (fb*fa > 0.) then
        print*, 'a, b, fa, fb', a, b, fa, fb
        stop
    end if
    atol = 0.5 * aerr
    rtol = max(0.5_dp*rerr, 2.0_dp*eps)

    ! begin step
10  c = a
    fc = fa
    d = b - a
    e = d
20  if (abs(fc) < abs(fb)) then
        a = b
        b = c
        c = a
        fa = fb
        fb = fc
        fc = fa
    end if

    ! convergence test
    tol = rtol * max(abs(b),abs(c)) + atol
    xm = 0.5 * (c-b)
    if (abs(xm) > tol) then
        if (fb /= 0.0) then
            ! is bisection necessary
            if (abs(e) >= tol) then
                if (abs(fa) > abs(fb)) then
                    ! is quadratic interpolation possible
                    if (a == c) then
                        ! linear interpolation
                        s = fb / fc
                        p = (c-b) * s
                        q = 1.0 - s
                    else
                        ! inverse quadratic interpolation
                        q = fa / fc
                        r = fb / fc
                        s = fb / fa
                        p = s * ((c-b)*q*(q-r)-(b-a)*(r-1.0))
                        q = (q-1.0) * (r-1.0) * (s-1.0)
                    end if
                    ! adjust signs
                    if (p > 0.0) q = -q
                    p = abs(p)
                    ! is interpolation acceptable
                    if (2.0*p < (3.0*xm*q-abs(tol*q))) then
                        if (p < abs(0.5*e*q)) then
                            e = d
                            d = p / q
                            go to 30
                        end if
                    end if
                end if
            end if

            ! bisection
            d = xm
            e = d

            ! complete step
30          a = b
            fa = fb
            if (abs(d) > tol) b = b + d
            if (abs(d) <= tol) b = b + sign(tol,xm)
            fb = f(b)
            if (fb*(fc/abs(fc)) > 0.0) go to 10
            go to 20
        end if
    end if

! done
fn_val = b
end function zeroin

end

所得样品的平均值约为5,而标准偏差约为1.64。

Question

有没有人知道我的算法在哪些方面可能会成为数字问题?事实上,Python版本和Fortran版本都有相同的问题,但是在不同程度上让我相信它是浮点数问题的一些舍入,但我无法想象在哪里。即使求解器返回舍入值,该差异也不应显示在简单的直方图中。

有没有人在我的算法中看到错误?我理解错了吗?

python random scipy fortran montecarlo
1个回答
2
投票

我只检查了Python版本,实际上确实存在错误。

也就是说,你的testfunc,即找根brentq例程的目标函数,表现非确定性。在根查找运行期间(即一次调用brentq()直到它返回),brentq需要多次调用相同的回调,直到达到收敛。但是,每当brentq调用此回调时,目标方程随着r获得新的伪随机值而变化。因此,根查找例程无法收敛到您想要的解决方案。

在概念上,您需要做的是首先生成均匀随机变量的样本,并对它们应用相同的确定性变换(即逆分布函数)。当然你不需要做根求解,因为你可以使用ppf随机变量类的cdf(百分位函数,即scipy.stats的逆)方法。

作为概念验证,您可以在标准统一样本数组上使用(不必要的昂贵且不太精确)转换方法运行以下代码:

import numpy
import numpy.random
from scipy.optimize import brentq
from scipy.stats import norm

# Setup
n = 10000
numpy.random.seed(0x5eed)
ran_array = numpy.random.uniform(size=n)

sol_array = numpy.empty_like(ran_array)


# Target function for root-finding: F(x) - p = 0 where p is the probability level
# for which the quantile is to be found
def targetfunc(x, p):
    return norm.cdf(x, 5, 2) - p


for i in range(n):
    sol_array[i] = brentq(targetfunc, -100.0, 100.0, args=(ran_array[i],))
print("mean = %10f" % sol_array.mean())
print("std  = %10f" % sol_array.std())

输出:

mean =   5.011041
std  =   2.009365
© www.soinside.com 2019 - 2024. All rights reserved.