我有这个 df_players
:
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 TableIndex 739 non-null object
1 PlayerID 739 non-null int64
2 GameWeek 739 non-null int64
3 Date 739 non-null object
4 Points 739 non-null int64
5 Price 739 non-null float64
6 BPS 739 non-null int64
7 SelectedBy 739 non-null int64
8 NetTransfersIn 739 non-null int64
9 MinutesPlayed 739 non-null float64
10 CleanSheet 739 non-null float64
11 Saves 739 non-null float64
12 PlayersBasicID 739 non-null int64
13 PlayerCode 739 non-null object
14 FirstName 739 non-null object
15 WebName 739 non-null object
16 Team 739 non-null object
17 Position 739 non-null object
18 CommentName 739 non-null object
我正在使用这个功能,与 quantile()
(变量'cut'传递的值),绘制玩家的分布图。
def jointplot(X, Y, week=None, title=None,
positions=None, height=6,
xlim=None, ylim=None, cut=0.015,
color=CB91_Blue, levels=30, bw=0.5, top_rows=100000):
if positions == None:
positions = ['GKP','DEF','MID','FWD']
#Check if week is given as a list
if week == None:
week = list(range(max(df_players['GameWeek'])))
if type(week)!=list:
week = [week]
df_played = df_players.loc[(df_players['MinutesPlayed']>=45)
&(df_players['GameWeek'].isin(week))
&(df_players['Position'].isin(positions))].head(top_rows)
if xlim == None:
xlim = (df_played[X].quantile(cut),
df_played[X].quantile(1-cut))
if ylim == None:
ylim = (df_played[Y].quantile(cut),
df_played[Y].quantile(1-cut))
sns.jointplot(X, Y, data=df_played,
kind="kde", xlim=xlim, ylim=ylim,
color=color, n_levels=levels,
height=height, bw=bw);
plt.suptitle(title,fontsize=18);
plt.show()
调用:
jointplot('Price', 'Points', positions=['FWD'],
color=color_list[3], title='Forwards')
this plots:
其中:
xlim = (4.5, 11.892999999999995)
ylim = (1.0, 13.0)
在我看来,这些x和y的限制允许我,使用分位值的范围... ... (cut),(1-cut)
缩放数据点的区域。
问题
现在,我想获得一定区域内玩家的 "WebName",就像这样。
我可以在上面选择一个目标区域,然后定义范围,大致上,通过xlim和ylim:
jointplot('Price', 'Points', positions=['FWD'],
xlim=(5.5, 7.0), ylim=(11.5, 13.0),
color=color_list[3], title='Forwards')
这样就可以把上面红色的区域放大了
但是我怎么才能得到该区域内的玩家名字呢?
你可以根据图中的边界选择球员数据框的部分。
selected = df_players[
(df_players.Points >= points_lbound)
& (df_players.Points <= points_ubound)
& (df_players.Price >= price_lbound)
& (df_players.Price <= price_ubound)
]
WebNames的列表将是 selected.WebNames