我试图在Sympy解决一些简单的Boolean satisfiability problems。在这里,我试图解决包含Or
逻辑运算符的约束:
from sympy import *
a,b = symbols("a b")
print(solve(Or(Eq(3, b*2), Eq(3, b*3))))
# In other words: (3 equals b*2) or (3 equals b*3)
# [1,3/2] was the answer that I expected
令人惊讶的是,这会导致错误:
TypeError: unsupported operand type(s) for -: 'Or' and 'int'
我可以使用Piecewise
解决这个问题,但这更详细:
from sympy import *
a,b = symbols("a b")
print(solve(Piecewise((Eq(3, b*2),Eq(3, b*2)), (Eq(3, b*3),Eq(3, b*3)))))
#prints [1,3/2], as expected
不幸的是,当我尝试解决两个变量而不是一个变量时,这种解决方法失败了:
from sympy import *
a,b = symbols("a b")
print(solve([Eq(a,3+b),Piecewise((Eq(b,3),Eq(b,3)), (Eq(b,4),Eq(b,4)))]))
#AttributeError: 'BooleanTrue' object has no attribute 'n'
是否有更可靠的方法来解决像Sympy这样的约束?
每个等式可以表示为等于0的等式。例如,3-2 * b = 0而不是3 = 2 * b。 (在Sympy中,你甚至不必编写=0
部分,它是假定的。)然后你可以简单地乘方程来表达OR逻辑:
>>> from sympy import *
>>> a,b = symbols("a b")
>>> solve((3-b*2)*(3-b*3))
[1, 3/2]
>>> solve([a-3-b, (3-b*2)*(3-b*3)])
[{b: 1, a: 4}, {b: 3/2, a: 9/2}]
为了扩展zaq的答案,SymPy无法识别solve
中的逻辑运算符,但您可以使用以下事实:
a*b = 0
相当于
a = 0 OR b = 0
也就是说,将两个方程相乘
solve((3 - 2*b)*(3 - 3*b), b)
另外请注意,如果您想使用AND而不是OR,则可以求解系统。那是,
solve([eq1, eq2])
相当于解决
eq1 = 0 AND eq2 = 0
我找到了解决Sympy中约束满足问题的另一种方法。它只是将布尔表达式转换为连接法线形式,以生成多个方程组:
import sympy
a,b,c = sympy.symbols("a,b,c")
def clauses(Arg,expr): # for DNFs only
if not isinstance(expr, Arg):
return expr,
return expr.args
def backtrack_solutions_(the_list,total_list,solutions):
if(the_list == []):
solution = sympy.solve(total_list)
if solution != [] and solution not in solutions:
solutions += [solution]
return
head, *tail = the_list
for j in head:
if(sympy.solve(total_list+[j]) != []):
backtrack_solutions_(tail,total_list+[j],solutions)
return solutions
def backtrack_solutions(formula_to_solve):
return backtrack_solutions_([list(clauses(sympy.boolalg.Or,a)) for a in clauses(sympy.boolalg.And,sympy.boolalg.to_cnf(formula_to_solve))],[],[])
# (3 = b*2) or (3 = b*3)
to_solve = sympy.Or(sympy.Eq(3, b*2), sympy.Eq(3, b*3))
print(["All solutions:",backtrack_solutions(to_solve)])
这个例子打印['All solutions:', [{b: 3/2}, {b: 1}]]
。