我正在使用updatemenus更新一个散点图,它把我想更新的字段作为参数。
dict(label = category,
method = 'update',
args = [dict(x=[df[(df['cat_name'] == category) & (df['cat_level'] == cat_level)]['value']],
y=[df[(df['cat_name'] == category) & (df['cat_level'] == cat_level)]['count']],
meta = [["Category:" + category]]
)])
我有第二个我正在添加的轨迹(这是一条最佳匹配线),我希望随着菜单选择的改变而更新(当用户选择一个菜单类别时,视觉效果会随着该类别数据的更新而更新--因此最佳匹配线应该改变)。
有没有一种聪明的方法来构建这个?
如果你的soure是一个pandas数据框架,这里的关键是为它自己的数据框架中的每一列建立一个线性模型,然后为每一个源列和相关的线性模型添加一个带有按钮的下拉菜单,使用像这样的循环。
for col in df.columns:
buttons.append(dict(method='restyle',
label=col,
visible=True,
args=[{'y':[df[col], df_reg[col+'_model']],
'x':[df.index],
'type':'scatter'}],
)
)
Plot 1: 列A和相关的线性模型。
Plot 2: Column B and associated linear model: Plot 2: B列和相关的线性模型。
完整的代码与可重复的数据样本。
# imports
import plotly.graph_objs as go
import numpy as np
import pandas as pd
import plotly.express as px
from datetime import datetime
# conda install -c anaconda scikit-learn
from sklearn.linear_model import LinearRegression #(conda install -c anaconda scikit-learn)
# data sample
nperiods=200
np.random.seed(123)
df = pd.DataFrame(np.random.randint(-10,12,size=(nperiods, 4)), columns=list('ABCD'))
datelist = pd.date_range(datetime(2020, 1, 1).strftime('%Y-%m-%d'), periods=nperiods).tolist()
df['dates'] = datelist
df = df.set_index(['dates'])
df.index = pd.to_datetime(df.index)
df.iloc[0]=0
df=df.cumsum()
# build dataframe df_reg with linear models using sklearn
# for each column in df
df_reg = pd.DataFrame()
# regression
for col in df:
#print(col)
reg = LinearRegression().fit(np.vstack(np.arange(0, len(df))), df[col].values)
df_reg[col+'_model'] = reg.predict(np.vstack(np.arange(0, len(df))))
#plotly
fig=go.Figure()
# set up one trace for source data in df
# and one trace for each linear model in df_reg
fig.add_trace(go.Scatter(x=df.index,
y=df[df.columns[0]],
visible=True))
fig.add_trace(go.Scatter(x=df.index,
y=df_reg[df_reg.columns[0]],
visible=True))
# Define updatemenus
updatemenu=[]
buttons=[]
# add buttons to select column in df
# and the associated linear model in df_reg
for col in df.columns:
buttons.append(dict(method='restyle',
label=col,
visible=True,
args=[{'y':[df[col], df_reg[col+'_model']],
'x':[df.index],
'type':'scatter'}],
)
)
# some adjustments to the updatemenus
updatemenu=[]
your_menu=dict()
updatemenu.append(your_menu)
updatemenu[0]['buttons']=buttons
updatemenu[0]['direction']='down'
updatemenu[0]['showactive']=True
# add dropdown menus to the figure
fig.update_layout(showlegend=False, updatemenus=updatemenu)
fig.show()