在开发编译器时,我偶然发现了试图有效合并两个包含“洞”的树的问题。这些树代表类型,其中叶子是简单类型(例如 int、bool),内部节点是结构类型(例如 ty -> ty、ty * ty)或“洞”,用 ?.
表示我感兴趣的操作是计算两个这样的树的“相遇”,其定义如下:
meet(ty, ?) = ty
meet(?, ty) = ty
meet(Int, Int) = Int
meet(Bool, Bool) = Bool
meet(ty1, ty1') = ty1''
和 meet(ty2, ty2') = ty2''
,则 meet(ty1 -> ty2, ty1' -> ty2') = ty1''-> ty2''
meet(ty1, ty1') = ty1''
和 meet(ty2, ty2') = ty2''
,则 meet(ty1 * ty2, ty1' * ty2') = ty1'' * ty2''
我当前的实现涉及使用三个指针,一个用于每个参数,一个用于结果。使用 DFS 遍历同时遍历两棵树,同时将匹配节点复制到结果树。当遇到洞时,我将整个子树复制到结果中。
我使用标记联合在 C 中实现了树。简单类型直接存储,复杂类型是指向平坦内存块的指针。
有效计算两棵带有“洞”的树的“相遇”的问题可以通过更优化的遍历技术来解决,特别是考虑到您所描述的约束。由于您使用带有标记联合的 C,因此以下方法应该适合保持效率和清晰度。
提前终止的递归函数:
结构匹配:
->
和 *
),递归地将 meet
函数应用于它们的子树。内存管理:
typedef enum { INT, BOOL, HOLE, ARROW, PAIR } TypeTag;
typedef struct Type {
TypeTag tag;
union {
// Leaf types
// No additional data needed for INT, BOOL, HOLE
// Complex types
struct {
struct Type *left;
struct Type *right;
} complex;
};
} Type;
Type *meet(Type *t1, Type *t2) {
if (!t1 || !t2) {
// Should not happen unless there's a bug in the tree traversal
return NULL;
}
// Handle the leaf nodes
if (t1->tag == HOLE) return t2;
if (t2->tag == HOLE) return t1;
if (t1->tag != t2->tag) {
// Types do not match; raise an error or return NULL
return NULL;
}
// Handle simple type equality
if (t1->tag == INT || t1->tag == BOOL) {
return t1; // or t2, since they are equivalent
}
// Handle complex types recursively
if (t1->tag == ARROW) {
Type *left = meet(t1->complex.left, t2->complex.left);
Type *right = meet(t1->complex.right, t2->complex.right);
if (!left || !right) return NULL; // Incompatibility found
// Allocate memory for the result type
Type *result = malloc(sizeof(Type));
result->tag = ARROW;
result->complex.left = left;
result->complex.right = right;
return result;
}
if (t1->tag == PAIR) {
Type *left = meet(t1->complex.left, t2->complex.left);
Type *right = meet(t1->complex.right, t2->complex.right);
if (!left || !right) return NULL; // Incompatibility found
// Allocate memory for the result type
Type *result = malloc(sizeof(Type));
result->tag = PAIR;
result->complex.left = left;
result->complex.right = right;
return result;
}
return NULL; // Should not reach here if all cases are handled
}
NULL
操作,则函数返回 meet
。您也可以提出错误,具体取决于您希望如何处理此类情况。考虑结构和类型兼容性,这种方法应该允许您有效地计算两棵树的交集。