我想每月将Prev.data与当前数据进行比较。我有以下数据。
Data-set 1 : (Prev) Data-set 2 : (Latest)
Year-month Sum-count Year-Month Sum-count
-- -- 201808 48
201807 30 201807 22
201806 20 201806 20
201805 35 201805 20
201804 12 201804 9
201803 15 -- --
我有如上所示的数据集。我想比较基于年 - 月列和总和计数的两个数据集,并且需要找出百分比的差异。
我使用spark 2.3.0和Scala 2.11。
这是模式:
import org.apache.spark.sql.functions.lag
val mdf = spark.read.format("csv").
option("InferSchema","true").
option("header","true").
option("delimiter",",").
option("charset","utf-8").
load("c:\\test.csv")
mdf.createOrReplaceTempView("test")
val res= spark.sql("select year-month,SUM(Sum-count) as SUM_AMT from test d group by year-month")
val win = org.apache.spark.sql.expressions.Window.orderBy("data_ym")
val res1 = res.withColumn("Prev_month", lag("SUM_AMT", 1,0).over(win)).withColumn("percentage",col("Prev_month") / sum("SUM_AMT").over()).show()
我需要像这样的输出:
如果百分比超过10%,那么我需要将标志设置为F.
set1 cnt set2 cnt output(Percentage) Flag
201807 30 201807 22 7% T
201806 20 201806 20 0% T
201805 35 201805 20 57% F
请帮帮我。
可以这样做:
val data1 = List(
("201807", 30),
("201806", 20),
("201805", 35),
("201804", 12),
("201803", 15)
)
val data2 = List(
("201808", 48),
("201807", 22),
("201806", 20),
("201805", 20),
("201804", 9)
)
val df1 = data1.toDF("Year-month", "Sum-count")
val df2 = data2.toDF("Year-month", "Sum-count")
val joined = df1.alias("df1").join(df2.alias("df2"), "Year-month")
joined
.withColumn("output(Percentage)", abs($"df1.Sum-count" - $"df2.Sum-count").divide($"df1.Sum-count"))
.withColumn("Flag", when($"output(Percentage)" > 0.1, "F").otherwise("T"))
.show(false)
输出:
+----------+---------+---------+-------------------+----+
|Year-month|Sum-count|Sum-count|output(Percentage) |Flag|
+----------+---------+---------+-------------------+----+
|201807 |30 |22 |0.26666666666666666|F |
|201806 |20 |20 |0.0 |T |
|201805 |35 |20 |0.42857142857142855|F |
|201804 |12 |9 |0.25 |F |
+----------+---------+---------+-------------------+----+
这是我的解决方案:
val values1 = List(List("1201807", "30")
,List("1201806", "20") ,
List("1201805", "35"),
List("1201804","12"),
List("1201803","15")
).map(x =>(x(0), x(1)))
val values2 = List(List("201808", "48")
,List("1201807", "22") ,
List("1201806", "20"),
List("1201805","20"),
List("1201804","9")
).map(x =>(x(0), x(1)))
import spark.implicits._
import org.apache.spark.sql.functions
val df1 = values1.toDF
val df2 = values2.toDF
df1.join(df2, Seq("_1"), "full").toDF("set", "cnt1", "cnt2")
.withColumn("percentage1", col("cnt1")/sum("cnt1").over() * 100)
.withColumn("percentage2", col("cnt2")/sum("cnt2").over() * 100)
.withColumn("percentage", abs(col("percentage2") - col("percentage1")))
.withColumn("flag", when(col("percentage") > 10, "F").otherwise("T")).na.drop().show()
这是结果:
+-------+----+----+------------------+------------------+------------------+----+
| set|cnt1|cnt2| percentage1| percentage2| percentage|flag|
+-------+----+----+------------------+------------------+------------------+----+
|1201804| 12| 9|10.714285714285714| 7.563025210084033| 3.15126050420168| T|
|1201807| 30| 22|26.785714285714285|18.487394957983195| 8.29831932773109| T|
|1201806| 20| 20|17.857142857142858| 16.80672268907563|1.0504201680672267| T|
|1201805| 35| 20| 31.25| 16.80672268907563|14.443277310924369| F|
+-------+----+----+------------------+------------------+------------------+----+
我希望它有帮助:)