Tensorflow Keras 不适合模型 - 无法将张量添加到批次中:元素数量不匹配。形状为:[张量]:[13],[批次]:[5]

问题描述 投票:0回答:1

我正在尝试根据包示例的示例使用 Tensorflow Keras 进行验证码求解器,并使用我自己的数据集来训练它。

我在 StackOverflow 中尝试了一些建议,但没有找到解决方案。

错误不断显示:

Cannot add tensor to the batch: number of elements does not match. Shapes are: [tensor]: [13], [batch]: [5]
 [[{{node IteratorGetNext}}]] [Op:__inference_train_function_13370]

以下是我尝试使用的代码,可以在此链接中访问图像列表:[ [验证码文件][1] ][2]

import os
import numpy as np
import matplotlib.pyplot as plt
from pathlib import Path
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

data_dir = Path("./formatted_captcha/")

# Get list of all the images
images = sorted(list(map(str, list(data_dir.glob("*.png")))))
labels = [img.split(os.path.sep)[-1].split(".png")[0] for img in images]
characters = set(char for label in labels for char in label)
characters = sorted(list(characters))

print("Number of images found: ", len(images))
print("Number of labels found: ", len(labels))
print("Number of unique characters: ", len(characters))
print("Characters present: ", characters)

# Batch size for training and validation
batch_size = 16

# Desired image dimensions
img_width = 150
img_height = 50

# Factor by which the image is going to be downsampled
# by the convolutional blocks. We will be using two
# convolution blocks and each block will have
# a pooling layer which downsample the features by a factor of 2.
# Hence total downsampling factor would be 4.
downsample_factor = 4

# Maximum length of any captcha in the dataset
max_length = max([len(label) for label in labels])



# Mapping characters to integers
char_to_num = layers.StringLookup(vocabulary=list(characters), mask_token=None)

# Mapping integers back to original characters
num_to_char = layers.StringLookup(vocabulary=char_to_num.get_vocabulary(), mask_token=None, invert=True)


def split_data(images, labels, train_size=0.9, shuffle=True):
    # 1. Get the total size of the dataset
    size = len(images)
    # 2. Make an indices array and shuffle it, if required
    indices = np.arange(size)
    if shuffle:
        np.random.shuffle(indices)
    # 3. Get the size of training samples
    train_samples = int(size * train_size)
    # 4. Split data into training and validation sets
    x_train, y_train = images[indices[:train_samples]], labels[indices[:train_samples]]
    x_valid, y_valid = images[indices[train_samples:]], labels[indices[train_samples:]]
    return x_train, x_valid, y_train, y_valid


# Splitting data into training and validation sets
x_train, x_valid, y_train, y_valid = split_data(np.array(images), np.array(labels))


def encode_single_sample(img_path, label):
    # 1. Read image
    img = tf.io.read_file(img_path)
    # 2. Decode and convert to grayscale
    img = tf.io.decode_png(img, channels=1)
    # 3. Convert to float32 in [0, 1] range
    img = tf.image.convert_image_dtype(img, tf.float32)
    # 4. Resize to the desired size
    img = tf.image.resize(img, [img_height, img_width], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
    # 5. Transpose the image because we want the time
    # dimension to correspond to the width of the image.
    img = tf.transpose(img, perm=[1, 0, 2])
    # 6. Map the characters in label to numbers
    label = char_to_num(tf.strings.unicode_split(label, input_encoding="UTF-8"))
    # 7. Return a dict as our model is expecting two inputs
    return {"image": img, "label": label}




train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
train_dataset = (
    train_dataset.map(
        encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE
    )
    .batch(batch_size)
    .prefetch(buffer_size=tf.data.AUTOTUNE)
)

validation_dataset = tf.data.Dataset.from_tensor_slices((x_valid, y_valid))
validation_dataset = (
    validation_dataset.map(
        encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE
    )
    .batch(batch_size)
    .prefetch(buffer_size=tf.data.AUTOTUNE)
)

class CTCLayer(layers.Layer):
    def __init__(self, name=None):
        super().__init__(name=name)
        self.loss_fn = keras.backend.ctc_batch_cost

    def call(self, y_true, y_pred):
        # Compute the training-time loss value and add it
        # to the layer using `self.add_loss()`.
        batch_len = tf.cast(tf.shape(y_true)[0], dtype="int64")
        input_length = tf.cast(tf.shape(y_pred)[2], dtype="int64")
        label_length = tf.cast(tf.shape(y_true)[2], dtype="int64")

        input_length = input_length * tf.ones(shape=(batch_len, 1), dtype="int64")
        label_length = label_length * tf.ones(shape=(batch_len, 1), dtype="int64")

        loss = self.loss_fn(y_true, y_pred, input_length, label_length)
        self.add_loss(loss)

        # At test time, just return the computed predictions
        return y_pred


def build_model():
    # Inputs to the model
    input_img = layers.Input(
        shape=(img_width, img_height, 1), name="image", dtype="float32"
    )
    labels = layers.Input(name="label", shape=(None,), dtype="float32")

    # First conv block
    x = layers.Conv2D(
        32,
        (3, 3),
        activation="relu",
        kernel_initializer="he_normal",
        padding="same",
        name="Conv1",
    )(input_img)
    x = layers.MaxPooling2D((2, 2), name="pool1")(x)

    # Second conv block
    x = layers.Conv2D(
        64,
        (3, 3),
        activation="relu",
        kernel_initializer="he_normal",
        padding="same",
        name="Conv2",
    )(x)
    x = layers.MaxPooling2D((2, 2), name="pool2")(x)

    # We have used two max pool with pool size and strides 2.
    # Hence, downsampled feature maps are 4x smaller. The number of
    # filters in the last layer is 64. Reshape accordingly before
    # passing the output to the RNN part of the model
    new_shape = ((img_width // 4), (img_height // 4) * 64)
    x = layers.Reshape(target_shape=new_shape, name="reshape")(x)
    x = layers.Dense(64, activation="relu", name="dense1")(x)
    x = layers.Dropout(0.2)(x)

    # RNNs
    x = layers.Bidirectional(layers.LSTM(128, return_sequences=True, dropout=0.25))(x)
    x = layers.Bidirectional(layers.LSTM(64, return_sequences=True, dropout=0.25))(x)

    # Output layer
    x = layers.Dense(
        len(char_to_num.get_vocabulary()) + 1, activation="softmax", name="dense2"
    )(x)

    # Add CTC layer for calculating CTC loss at each step
    output = CTCLayer(name="ctc_loss")(labels, x)

    # Define the model
    model = keras.models.Model(
        inputs=[input_img, labels], outputs=output, name="ocr_model_v1"
    )
    # Optimizer
    opt = keras.optimizers.Adam()
    # Compile the model and return
    model.compile(optimizer=opt)
    return model


# Get the model
model = build_model()
model.summary()

epochs = 100
early_stopping_patience = 10
# Add early stopping
early_stopping = keras.callbacks.EarlyStopping(
    monitor="val_loss", patience=early_stopping_patience, restore_best_weights=True
)

# Train the model
history = model.fit(
    train_dataset,
    batch_size=batch_size,
    validation_data=validation_dataset,
    epochs=epochs,
    callbacks=[early_stopping],
    validation_steps=10,
)


# Get the prediction model by extracting layers till the output layer
prediction_model = keras.models.Model(
    model.get_layer(name="image").input, model.get_layer(name="dense2").output
)
prediction_model.summary()

# A utility function to decode the output of the network
def decode_batch_predictions(pred):
    input_len = np.ones(pred.shape[0]) * pred.shape[2]
    # Use greedy search. For complex tasks, you can use beam search
    results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0][
        :, :max_length
    ]
    # Iterate over the results and get back the text
    output_text = []
    for res in results:
        res = tf.strings.reduce_join(num_to_char(res)).numpy().decode("utf-8")
        output_text.append(res)
    return output_text


#  Let's check results on some validation samples
for batch in validation_dataset.take(1):
    batch_images = batch["image"]
    batch_labels = batch["label"]

    preds = prediction_model.predict(batch_images)
    pred_texts = decode_batch_predictions(preds)

    orig_texts = []
    for label in batch_labels:
        label = tf.strings.reduce_join(num_to_char(label)).numpy().decode("utf-8")
        orig_texts.append(label)

    _, ax = plt.subplots(4, 4, figsize=(15, 5))
    for i in range(len(pred_texts)):
        img = (batch_images[i, :, :, 0] * 255).numpy().astype(np.uint8)
        img = img.T
        title = f"Prediction: {pred_texts[i]}"
        ax[i // 4, i % 4].imshow(img, cmap="gray")
        ax[i // 4, i % 4].set_title(title)
        ax[i // 4, i % 4].axis("off")
plt.show()``


  [1]: https://file.io/yhnCd7gfu0Bb
python tensorflow keras deep-learning
1个回答
0
投票

请使用这个,上面的问题都是关于您自己的图像标签的可变长度。我希望它能解决您的问题。

images = sorted(list(map(str, list(data_dir.glob("*.png")))))
raw_labels = [img.split(os.path.sep)[-1].split(".png")[0] for img in images]
max_length = max([len(label) for label in raw_labels])
labels = [label.ljust(max_length) for label in raw_labels]
characters = set(char for label in labels for char in label)
© www.soinside.com 2019 - 2024. All rights reserved.