将边界框提取为.jpg

问题描述 投票:0回答:1

将检测到的对象与边界框一起提取,并将其另存为我的磁盘上的图像。

我已经采用了边缘电子的代码并成功地训练和测试了该模型。我的图像上有一个边界框。

import os
import cv2
import numpy as np
import tensorflow as tf
import sys
from glob import glob
import glob
import csv
from PIL import Image
import json

sys.path.append("..")

# Import utilites
from utils import label_map_util
from utils import visualization_utils as vis_util

MODEL_NAME = 'inference_graph'

CWD_PATH = os.getcwd()

PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,'frozen_inference_graph.pb')

PATH_TO_LABELS = os.path.join(CWD_PATH,'training','labelmap.pbtxt')

PATH_TO_IMAGE = list(glob.glob("C:\\new_multi_cat\\models\\research\\object_detection\\img_test\\*jpeg"))

NUM_CLASSES = 3

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

detection_graph = tf.Graph()

with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')

    sess = tf.Session(graph=detection_graph)

image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')

detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')


detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')

num_detections = detection_graph.get_tensor_by_name('num_detections:0')


for paths in range(len(PATH_TO_IMAGE)):
    image = cv2.imread(PATH_TO_IMAGE[paths])
    image_expanded = np.expand_dims(image, axis=0)

    (boxes, scores, classes, num) = sess.run([detection_boxes, detection_scores, detection_classes, num_detections],feed_dict={image_tensor: image_expanded})


    vis_util.visualize_boxes_and_labels_on_image_array(
    image,
    np.squeeze(boxes),
    np.squeeze(classes).astype(np.int32),
    np.squeeze(scores),
    category_index,
    use_normalized_coordinates=True,
    line_thickness=4,
    min_score_thresh=0.80)


    white_bg_img = 255*np.ones(PATH_TO_IMAGE[paths].shape, np.uint8)
    vis_util.draw_bounding_boxes_on_image(
    white_bg_img ,
    np.squeeze(boxes),
    color='red',
    thickness=4)
    cv2.imwrite("bounding_boxes.jpg", white_bg_img)

    boxes = np.squeeze(boxes)
    for i in range(len(boxes)):
        box[0]=box[0]*height
        box[1]=box[1]*width
        box[2]=box[2]*height
        box[3]=box[3]*width
    roi = image[box[0]:box[2],box[1]:box[3]].copy()
    cv2.imwrite("box_{}.jpg".format(str(i)), roi)

这是我得到的错误:

Traceback (most recent call last):   File "objd_1.py", line
75, in <module>
     white_bg_img = 255*np.ones(PATH_TO_IMAGE[paths].shape, np.uint8) AttributeError: 'str' object has no attribute 'shape' 

我搜索了很多,但无法识别代码中的错误。为什么我无法将检测到的区域提取为图像?

python opencv tensorflow object-detection-api
1个回答
1
投票

您尝试从文件名而不是图像中获取shape。更换

white_bg_img = 255*np.ones(PATH_TO_IMAGE[paths].shape, np.uint8)

white_bg_img = 255*np.ones(image.shape, np.uint8)

编辑:更正的代码

import os
import cv2
import numpy as np
import tensorflow as tf
import sys
from glob import glob
import glob
import csv
from PIL import Image
import json

sys.path.append("..")

# Import utilites
from utils import label_map_util
from utils import visualization_utils as vis_util

MODEL_NAME = 'inference_graph'

CWD_PATH = os.getcwd()

PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,'frozen_inference_graph.pb')

PATH_TO_LABELS = os.path.join(CWD_PATH,'training','labelmap.pbtxt')

PATH_TO_IMAGE = list(glob.glob("C:\\new_multi_cat\\models\\research\\object_detection\\img_test\\*jpeg"))

NUM_CLASSES = 3

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

detection_graph = tf.Graph()

with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')

    sess = tf.Session(graph=detection_graph)

image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')

detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')


detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')

num_detections = detection_graph.get_tensor_by_name('num_detections:0')


for paths in range(len(PATH_TO_IMAGE)):
    image = cv2.imread(PATH_TO_IMAGE[paths])
    image_expanded = np.expand_dims(image, axis=0)

    (boxes, scores, classes, num) = sess.run([detection_boxes, detection_scores, detection_classes, num_detections],feed_dict={image_tensor: image_expanded})


    vis_util.visualize_boxes_and_labels_on_image_array(
    image,
    np.squeeze(boxes),
    np.squeeze(classes).astype(np.int32),
    np.squeeze(scores),
    category_index,
    use_normalized_coordinates=True,
    line_thickness=4,
    min_score_thresh=0.80)


    white_bg_img = 255*np.ones(image.shape, np.uint8)
    vis_util.draw_bounding_boxes_on_image_array(
    white_bg_img ,
    np.squeeze(boxes),
    color='red',
    thickness=4)
    cv2.imwrite("bounding_boxes.jpg", white_bg_img)

    boxes = np.squeeze(boxes)
    for i in range(len(boxes)):
        box[0]=box[0]*height
        box[1]=box[1]*width
        box[2]=box[2]*height
        box[3]=box[3]*width
    roi = image[box[0]:box[2],box[1]:box[3]].copy()
    cv2.imwrite("box_{}.jpg".format(str(i)), roi)
© www.soinside.com 2019 - 2024. All rights reserved.