案例陈述中的数组

问题描述 投票:1回答:1

我在使用数组作为状态机的case语句时遇到麻烦。大多数站点都提到数组不能用于case语句,因此我一直在尝试解决该问题,但到目前为止它没有成功。我真的很感谢任何帮助或建议。 为了澄清:我不想对状态进行硬编码,我试图以这样的方式制作程序:如果用户仅更改fsm_state_array []中的顺序,则程序将仅以该顺序执行,而无需更改void loop()中的其他任何内容。

这是到目前为止我尝试过的,当用户在数组中输入状态序列时,我已经使用函数对功能进行了硬编码以检查先前的状态,当前状态和下一个状态,因此在我的代码中,状态应从0-> 2-> 3-> 1,但是,我得到0-> 2-> 1->3。我知道如果仅在case语句中使用数组,就可以轻松解决此问题。但是编译器给我一个错误。非常感谢您的帮助或建议。

我的代码如下所示:

//Objectives: Use input from laser to control pre-amp on adc. Multiplex the inputs on Pre-Amp
//Type: Pulse, Freq:20Hz (50ms), Amp:5.0 Vpp, Offset:500mV, Width = 100ns

//-----------------------PROJECT LIBRARIES----------------------------------
#include <Bounce2.h>
#include <Arduino.h>
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/interrupt.h>
//-----------------------DEFINES------------------------------------------
//Declare Laser Input Pin
#define LASER_PIN 2

//Declare Reset Pin
#define RESET_PIN 3


typedef enum {
  STATE_0,
  STATE_1,
  STATE_2,
  STATE_3
} fsm_state;

//User can change or remove states here
fsm_state fsm_state_Array[] = {STATE_0, STATE_2, STATE_3, STATE_1};

 //*eNextstate controls on which state the program starts the state machine, default is STATE_00, Must be same value as Transition_State[0]
fsm_state eNextState = fsm_state_Array[0];

int Current_State = 0;
int Next_State = 0;
int Previous_State = 0;

// -------------------------CONSTANTS (won't change)-------------------------------------
const unsigned long period = 1000;  //the value is a number of milliseconds

//-------------------------VARIABLES (will change)-------------------------------------
bool only_for_print = false;//used only for print state ments

int reset_switch = 1;//Start HIGH to avoid reset
int PulseCount = 0; //Pulse count from X-RAY
int Output = 0;//Switch state on the Pre-Amp
int wait = 0;//wait for pulses count
int N = 20;//no. of pulses to count before switching states
volatile int IRQcount = 0;
volatile boolean reset_flag = false;

unsigned long start_time = 0;
unsigned long current_time = 0;

//----------------------------USER DEFINED FUNCTIONS---------------------------------
void fsm();
void loop();
void setup();
void WDT_RESET();
void IRQcounter();
void CountPulses();
//-----------------------------DEBOUNCE FUNCTIONS---------------------------------------


//--------------------------------MAIN SETUP--------------------------------------

void setup()
{

  Serial.begin(115200);
  //Pin Setup
  pinMode(LASER_PIN, INPUT_PULLUP);
  pinMode(RESET_PIN, INPUT_PULLUP);
  attachInterrupt(digitalPinToInterrupt(LASER_PIN), IRQcounter, RISING);//attach interrupt handler to laser input
  attachInterrupt (digitalPinToInterrupt (RESET_PIN), RESET_ISR, FALLING);  // attach interrupt handler to reset, wait for user press button or switch
  start_time = millis();   //initial start time
  sei();//Turn on Interrupts

  WaitForPulses();//Waits to detect 20 pulses
}

//--------------------------------MAIN LOOP----------------------------------
void loop()
{


  current_time = millis();
  fsm();//State machine
}


//--------------------------------PULSE COUNT FUNCTION--------------------------------------------



void CountPulses()
{
  //  current_time = millis();
  if ((current_time - start_time) >= period)
  {
    start_time = current_time;
    cli();//disable interrupts
    PulseCount = IRQcount;
    IRQcount = 0;
    Serial.print(F("Pulse Count is = "));
    Serial.println(PulseCount);
    sei();//enable interrupts
  }
}

//--------------------------------STATE MACHINE FUNCTION--------------------------------------------
void fsm()
{
  switch (eNextState)
  {



    case STATE_0:

      /////////Print Statement only for debugging//////////
      while (only_for_print == false)
      {
        Serial.println("The state is 0");
        only_for_print = true;
      }  

      ///////// Count Pulses Setup /////////////////
        Previous_State = fsm_state_Array[3];
        Current_State= 0;
        Next_State = fsm_state_Array[1];


        current_time = millis();
        CountPulses();
        Output = 0;

      if (PulseCount == N)
      {
        PulseCount = 0;//Reset Pulse Count
        only_for_print = false; //used only for print statments
       State_Check_0_to_1();//Move to next state
      }
      break;


    case STATE_1:
      /////////Print Statement only for debugging//////////
      while (only_for_print == false)
      {
        Serial.println("The state is 1");
        only_for_print = true;
      }

      ///////// Count Pulses Setup /////////////////

       Previous_State = fsm_state_Array[0];
        Current_State= 1;
        Next_State = fsm_state_Array[2];

      current_time = millis();
      CountPulses();
      Output = 1;
      if (PulseCount == N)
      {
        PulseCount = 0;//Reset Pulse Count
        only_for_print = false; //used only for print statments
        State_Check_1_to_2();//Move to next state
      }
      break;


    case STATE_2:
      /////////Print Statement only for debugging//////////
      while (only_for_print == false)
      {
        Serial.println("The state is 2");
        only_for_print = true;
      }

      ///////// Count Pulses Setup /////////////////

         Previous_State = fsm_state_Array[1];
        Current_State= 2;
        Next_State = fsm_state_Array[3];


      current_time = millis();
      CountPulses();
      Output = 2;
      if (PulseCount == N)
      {
        PulseCount = 0;//Reset Pulse Count
        only_for_print = false; //used only for print statments
        State_Check_2_to_3();//Move to next state
      }

      break;


    case STATE_3:
      /////////Print Statement only for debugging//////////
      while (only_for_print == false)
      {
        Serial.println("The state is 3");
        only_for_print = true;
      }
      ///////// Count Pulses Setup /////////////////

       Previous_State = fsm_state_Array[2];
       Current_State= 3;
       Next_State = fsm_state_Array[0];

      current_time = millis();
      CountPulses();
      Output = 3;
      if (PulseCount == N)
      {
        PulseCount = 0;//Reset Pulse Count
        only_for_print = false; //used only for print statments
       State_Check_3_to_0();//Move to next state
      }

      break;


  }

}

//----------------------------------RESET SWITCH ISR-------------------------------------

void RESET_ISR()
{
  reset_flag = true;
  if (reset_flag == true)
  {
    // Serial.println("System will now Reset");// Only for debugging
    reset_flag = false;//Reset reset switch flag
    wdt_enable(WDTO_500MS);//Reset after 0.5 seconds
    while (1)
    {
      // wdt_reset();          // uncomment to avoid reboot
    }
  }
}


//-----------------------PULSE COUNT ISR---------------------------------------

void IRQcounter()
{
  IRQcount++;
}
//-----------------------WAIT FOR PULSES---------------------------------------
void WaitForPulses()
{
  while (wait < 20)
  {
    if (bit_is_set(EIFR, INTF0))
    {
      Serial.println("Pulse is detected ");
      wait++;
    }
  }
  wait = 0;//reset
}

void State_Check_0_to_1()//Check values of state 0 before going to state 1 
{

    if(Previous_State == fsm_state_Array[3] && Current_State == 0 && Next_State == fsm_state_Array[1])
    {
      eNextState = Next_State;
    }


}

void State_Check_1_to_2()//Check values of state 1 before going to state 2 
{

    if((Previous_State == fsm_state_Array[0]) && (Current_State == 1) && (Next_State == fsm_state_Array[2]))
    {
      eNextState = Next_State;

    }

}


void State_Check_2_to_3()//Check values of state 2 before going to state 3 
{

    if((Previous_State == fsm_state_Array[1]) && (Current_State == 2) && (Next_State == fsm_state_Array[3]))
    {
      eNextState = Next_State;

    }

}


void State_Check_3_to_0()//Check values of state 3 before going to state 0 
{

    if((Previous_State == fsm_state_Array[2]) && (Current_State == 3) && (Next_State == fsm_state_Array[0]))
    {
      eNextState = Next_State;

    }

}

这是我的串行监视器显示的内容:

Pulse is detected
Pulse is detected
Pulse is detected
Pulse is detected
Pulse is detected
Pulse is detected
Pulse is detected
Pulse is detected
Pulse is detected
Pulse is detected
Pulse is detected
Pulse is detected
Pulse is detected
Pulse is detected
Pulse is detected
Pulse is detected
Pulse is detected
Pulse is detected
Pulse is detected
Pulse is detected
The state is 0                               -----> State 0
Pulse Count is = 72
Pulse Count is = 19
Pulse Count is = 20
The state is 2                               -----> State 2
Pulse Count is = 20
The state is 1                               -----> State 1
Pulse Count is = 21
Pulse Count is = 19
Pulse Count is = 21
Pulse Count is = 19
Pulse Count is = 21
Pulse Count is = 19
Pulse Count is = 21
Pulse Count is = 19
Pulse Count is = 21
Pulse Count is = 20
The state is 3                           -----> State 3
Pulse Count is = 20
The state is 0       
Pulse Count is = 20
The state is 2
Pulse Count is = 20
The state is 1
Pulse Count is = 20
The state is 3

单独的代码,按照注释中的建议使用指针测试FSM:

typedef void (*current_state)();
void state0();
void state1();
void state2();
void state3();
current_state states[4]={&state0,&state2,&state3,&state1};
current_state next_state;
void setup() 
{
 Serial.begin(115200);

}

void loop()
{
  current_state();
}


void state0() 
{
   next_state = states[1]; // No parenthesis!
   Serial.println("I am in STATE 0");
}
void state1() 
{
   next_state = states[2]; // No parenthesis!
   Serial.println("I am in STATE 1");
}
void state2() 
{
   next_state = states[3]; // No parenthesis!
   Serial.println("I am in STATE 2");
}
void state3() 
{
   next_state = states[0]; // No parenthesis!
   Serial.println("I am in STATE 3");
}
c++ performance optimization arduino switch-statement
1个回答
0
投票

此代码来自处理STATE_2

© www.soinside.com 2019 - 2024. All rights reserved.