我想将OpenCV与
ultralytics
的YOLOv8集成,所以我想从模型预测中获取边界框坐标。我该怎么做?
from ultralytics import YOLO
import cv2
model = YOLO('yolov8n.pt')
cap = cv2.VideoCapture(0)
cap.set(3, 640)
cap.set(4, 480)
while True:
_, frame = cap.read()
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = model.predict(img)
for r in results:
for c in r.boxes.cls:
print(model.names[int(c)])
cv2.imshow('YOLO V8 Detection', frame)
if cv2.waitKey(1) & 0xFF == ord(' '):
break
cap.release()
cv2.destroyAllWindows()
我想在OpenCV中显示YOLO带注释的图像。我知道我可以使用
model.predict(source='0', show=True)
中的流参数。但我想持续监控程序的预测类名称,同时显示图像输出。
这将循环播放视频中的每一帧,使用内置的 ultralytics 注释器绘制相应的框:
from ultralytics import YOLO
import cv2
from ultralytics.utils.plotting import Annotator # ultralytics.yolo.utils.plotting is deprecated
model = YOLO('yolov8n.pt')
cap = cv2.VideoCapture(0)
cap.set(3, 640)
cap.set(4, 480)
while True:
_, frame = cap.read()
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = model.predict(img)
for r in results:
annotator = Annotator(frame)
boxes = r.boxes
for box in boxes:
b = box.xyxy[0] # get box coordinates in (top, left, bottom, right) format
c = box.cls
annotator.box_label(b, model.names[int(c)])
frame = annotator.result()
cv2.imshow('YOLO V8 Detection', frame)
if cv2.waitKey(1) & 0xFF == ord(' '):
break
cap.release()
cv2.destroyAllWindows()
您可以使用以下代码获取所有信息:
for result in results:
# detection
result.boxes.xyxy # box with xyxy format, (N, 4)
result.boxes.xywh # box with xywh format, (N, 4)
result.boxes.xyxyn # box with xyxy format but normalized, (N, 4)
result.boxes.xywhn # box with xywh format but normalized, (N, 4)
result.boxes.conf # confidence score, (N, 1)
result.boxes.cls # cls, (N, 1)
# segmentation
result.masks.masks # masks, (N, H, W)
result.masks.segments # bounding coordinates of masks, List[segment] * N
# classification
result.probs # cls prob, (num_class, )
您可以在文档中进一步阅读。