如何从神经元尖峰数据中制作平滑曲线神经信号

问题描述 投票:0回答:1

我将数据存储在有关神经元记录的结构中。神经元尖峰存储在逻辑数组中,其中尖峰为 1,没有尖峰为 0。

spike = <1x50 logical> 
spike = [1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 1 0 0 ...]

我要做的就是使用高斯滤波器将这些尖峰转换为平滑曲线信号。

我有以下平滑功能:

function z = spikes(x, winWidth)
% places a Gaussian centered on every spike
% if x is matrix, then perform on the columns

winWidth = round(winWidth);

if winWidth == 0
    y = [0 1 0];
    w = 1;
else
    w = winWidth * 5;
    t = -w : w;
    y = normpdf(t,0,winWidth);
end

if isvector(x)
    z = conv(x,y);
    z = z(w+1 : end);
    z = z(1 : length(x));
else
    z = zeros(size(x));
    for i = 1 : size(x,2)
        z1 = conv(x(:,i),y);
        z1 = z1(w+1 : end);
        z1 = z1(1 : length(x));
        z(:,i) = z1;
    end
end

end

我只是想知道如何从类似于上述逻辑数组的尖峰中产生神经信号?

PS:我很迷茫,我的答案无法理解,无法发布在这里。

matlab gaussian
1个回答
2
投票

如果我理解正确的话,你只需要增加采样频率并进行卷积即可。由于您的原始阵列对应于采样频率为一个尖峰的信号,因此如果您想提高尖峰的分辨率,则需要人为地在尖峰之间引入更多数据点。

spike = [1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 1 0 0];

![n_samples = numel(spike);
resampling_f = 50;
new_signal = zeros(n_samples*resampling_f,1);

spikes_ind = find(spike);
new_signal((spikes_ind-1)*50+round(resampling_f/2)) = 1;

%here you can use the spikes function you defined
winWidth = 10;
w = winWidth * 5;
t = -w : w;
kernel = normpdf(t,0,winWidth);
spikes_sample = conv(x,kernel);

figure, hold on
subplot(1,2,1), hold on
plot(new_signal)

subplot(1,2,2), hold on
plot(spikes_sample)][1]

enter image description here

© www.soinside.com 2019 - 2024. All rights reserved.