我运行一段代码,使用简单的CNN对音频数据进行预测。
当使用 tf.keras.Model.predict
我的平均执行时间为0.17s,而当我使用TF.lite.Interpreter时,我的执行时间为0.002s,大约快了75倍!我在我的桌面(Ubuntu 18.04,TF 2.1)和Rapsberry Pi 3B+(Raspbian Buster,同样的代码)上试了一下,得到的结果是一样的。我在我的桌面(Ubuntu 18.04, TF 2.1)和Rapsberry Pi 3B+(Raspbian Buster, 同样的代码)上试了一下,结果差不多。
为什么会有这么大的差异?
更新:我设置了 batch_size=1
在 tf.keras.Model.predict
而且现在比TFLite慢了65倍。
测试_tflite.py
import os
import pathlib
import tensorflow as tf
from tensorflow.keras.models import model_from_json
import numpy as np
import time
# disable GPU
tf.config.set_visible_devices([], 'GPU')
parent = pathlib.Path(__file__).parent.absolute()
# path to Tensorflow model and weights
MODEL_PATH = os.path.join(parent, 'models/vd_model.json')
WEIGHTS_PATH = os.path.join(parent, 'models/model.30-0.97.h5')
INPUT_SHAPE = (1, 43, 40, 1)
NUM_RUN = 100
def predict_tflite(interpreter, input_details, output_details, data):
interpreter.set_tensor(input_details[0]['index'], data)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
return output_data
def run():
# Load Tensorflow model
with open(MODEL_PATH, 'r') as f:
model = model_from_json(f.read())
model.load_weights(WEIGHTS_PATH)
# Show model
model.summary()
# Convert to TFLite
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
interpreter = tf.lite.Interpreter(model_content=tflite_model)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
predictions = []
for i in range(NUM_RUN):
# fake input data
data = np.random.rand(*INPUT_SHAPE).astype(np.float32)
# Tensorflow
start_time = time.time()
prediction = model.predict(data, batch_size=1)
elapsed = time.time() - start_time
# Tensoflow Lite
start_time = time.time()
prediction_tflite = predict_tflite(interpreter, input_details, output_details, data)
elapsed_tflite = time.time() - start_time
predictions.append(((elapsed, prediction), (elapsed_tflite, prediction_tflite)))
# Make sure predictions are close
for pred_tf, pred_tflite in predictions:
if not np.all(np.isclose(pred_tf[1], pred_tflite[1])):
print('Predictions are not close')
# Compute average execution times
tf_avg = np.mean([p[0] for p, _ in predictions])
tflite_avg = np.mean([p[0] for _, p in predictions])
print(f'TF: {tf_avg:.6f}')
print(f'TFLite: {tflite_avg:.6f}')
if __name__ == "__main__":
run()
执行(Raspberry Pi)。
pi@raspberrypi:~/src/audio_monitoring/audio_monitoring/tests $ python3 test_tflite.py
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 43, 40, 16) 160
_________________________________________________________________
batch_normalization (BatchNo (None, 43, 40, 16) 64
_________________________________________________________________
activation (Activation) (None, 43, 40, 16) 0
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 22, 20, 16) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 22, 20, 32) 4640
_________________________________________________________________
batch_normalization_1 (Batch (None, 22, 20, 32) 128
_________________________________________________________________
activation_1 (Activation) (None, 22, 20, 32) 0
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 1, 1, 32) 0
_________________________________________________________________
dropout (Dropout) (None, 1, 1, 32) 0
_________________________________________________________________
flatten (Flatten) (None, 32) 0
_________________________________________________________________
dense (Dense) (None, 4) 132
=================================================================
Total params: 5,124
Trainable params: 5,028
Non-trainable params: 96
_________________________________________________________________
TF average prediction time: 0.168310s
TFLite average prediction time: 0.002269s
这种性能差异背后可能有很多原因,但总结一下。
也就是说,并不是所有的TensorFlow模型都可以转换为TFLite,因为TFLite只支持TensorFlow支持的操作子集。
我想你会发现这个技术讲座很有趣。请看一看。