使用PIL将RGB图像变成纯黑白图像

问题描述 投票:0回答:6

我正在使用 Python 图像库进行一些非常简单的图像处理,但是我在将灰度图像转换为单色(黑白)图像时遇到了麻烦。如果我在将图像更改为灰度(转换('L'))后保存,则图像将按您的预期呈现。但是,如果我将图像转换为单色、单波段图像,它只会产生噪声,如下图所示。有没有一种简单的方法使用 PIL / python 将彩色 png 图像转换为纯黑白图像?

from PIL import Image 
import ImageEnhance
import ImageFilter
from scipy.misc import imsave
image_file = Image.open("convert_image.png") # open colour image
image_file= image_file.convert('L') # convert image to monochrome - this works
image_file= image_file.convert('1') # convert image to black and white
imsave('result_col.png', image_file)

Original Image Converted Image

python python-imaging-library python-2.7
6个回答
117
投票
from PIL import Image 
image_file = Image.open("convert_image.png") # open colour image
image_file = image_file.convert('1') # convert image to black and white
image_file.save('result.png')

产量

enter image description here


94
投票

仅用于创建具有自定义阈值的双层(黑白)图像的 PIL 解决方案:

from PIL import Image
img = Image.open('mB96s.png')
thresh = 200
fn = lambda x : 255 if x > thresh else 0
r = img.convert('L').point(fn, mode='1')
r.save('foo.png')

只要

r = img.convert('1')
r.save('foo.png')

您会得到一个抖动图像。

从左到右依次为输入图像、黑白转换结果和抖动结果:

Input Image Black and White Result Dithered Result

您可以单击图像查看未缩放的版本。


29
投票

另一个选项(例如,当您需要使用分割蒙版时,出于科学目的,这很有用)是简单地应用阈值:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""Binarize (make it black and white) an image with Python."""

from PIL import Image
from scipy.misc import imsave
import numpy


def binarize_image(img_path, target_path, threshold):
    """Binarize an image."""
    image_file = Image.open(img_path)
    image = image_file.convert('L')  # convert image to monochrome
    image = numpy.array(image)
    image = binarize_array(image, threshold)
    imsave(target_path, image)


def binarize_array(numpy_array, threshold=200):
    """Binarize a numpy array."""
    for i in range(len(numpy_array)):
        for j in range(len(numpy_array[0])):
            if numpy_array[i][j] > threshold:
                numpy_array[i][j] = 255
            else:
                numpy_array[i][j] = 0
    return numpy_array


def get_parser():
    """Get parser object for script xy.py."""
    from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
    parser = ArgumentParser(description=__doc__,
                            formatter_class=ArgumentDefaultsHelpFormatter)
    parser.add_argument("-i", "--input",
                        dest="input",
                        help="read this file",
                        metavar="FILE",
                        required=True)
    parser.add_argument("-o", "--output",
                        dest="output",
                        help="write binarized file hre",
                        metavar="FILE",
                        required=True)
    parser.add_argument("--threshold",
                        dest="threshold",
                        default=200,
                        type=int,
                        help="Threshold when to show white")
    return parser


if __name__ == "__main__":
    args = get_parser().parse_args()
    binarize_image(args.input, args.output, args.threshold)

它看起来像这样

./binarize.py -i convert_image.png -o result_bin.png --threshold 200

enter image description here


7
投票

正如 Martin Thoma 所说,您通常需要应用阈值。但是您可以使用简单的矢量化来完成此操作,它的运行速度比该答案中使用的 for 循环快得多。

下面的代码将图像的像素转换为 0(黑色)和 1(白色)。

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt

#Pixels higher than this will be 1. Otherwise 0.
THRESHOLD_VALUE = 200

#Load image and convert to greyscale
img = Image.open("photo.png")
img = img.convert("L")

imgData = np.asarray(img)
thresholdedData = (imgData > THRESHOLD_VALUE) * 1.0

plt.imshow(thresholdedData)
plt.show()

2
投票

这就是我的做法,它有更好的效果,就像灰色滤镜一样

from PIL import Image
img = Image.open("profile.png")
BaW = img.convert("L")
BaW.save("profileBaW.png")
BaW.show()

2
投票

这是使用 Python 实现此操作的简单方法:

import numpy as np
import imageio

image = imageio.imread(r'[image-path]', as_gray=True)

# getting the threshold value
thresholdValue = np.mean(image)

# getting the dimensions of the image
xDim, yDim = image.shape

# turn the image into a black and white image
for i in range(xDim):
    for j in range(yDim):
        if (image[i][j] > thresholdValue):
            image[i][j] = 255
        else:
            image[i][j] = 0

© www.soinside.com 2019 - 2024. All rights reserved.