我有以下数据,我想要做的是将来自task_resources的那些在task_id和qos_level上匹配的字典放入新列表中:
task_resources = [
{
"resource_id": "52a58a34-6b1b-49b7-b53d-2bc4bf72c172",
"domain_name": "Nep",
"tasks_id": "702148b2-4f21-4034-af8d-d11737f9f811",
"qos_level": "default",
"cpu_cores": 1,
"memory_mb": 128,
"storage_mb": 0,
"cpu_flops": 19177,
"gpu_flops": 0,
"gpu_memory_mb": 0,
"egress_network_bandwidth_gbps": 0,
"ingress_network_bandwidth_gbps": 0,
"create_time": "2024-11-13T12:13:52.192657"
},
{
"resource_id": "8208915d-90b4-4a6c-a98c-e9eb965b4e6b",
"domain_name": "Nep",
"tasks_id": "702148b2-4f21-4034-af8d-d11737f9f811",
"qos_level": "low",
"cpu_cores": 1,
"memory_mb": 128,
"storage_mb": 0,
"cpu_flops": 19177,
"gpu_flops": 0,
"gpu_memory_mb": 0,
"egress_network_bandwidth_gbps": 0,
"ingress_network_bandwidth_gbps": 0,
"create_time": "2024-11-13T12:13:52.202177"
},
{
"resource_id": "c34a4411-20d3-42eb-9f74-1336ab6ab024",
"domain_name": "Nep",
"tasks_id": "95bc75a6-b292-484d-a65d-86fae2cb6b6f",
"qos_level": "default",
"cpu_cores": 1,
"memory_mb": 128,
"storage_mb": 0,
"cpu_flops": 19177,
"gpu_flops": 0,
"gpu_memory_mb": 0,
"egress_network_bandwidth_gbps": 0,
"ingress_network_bandwidth_gbps": 0,
"create_time": "2024-11-13T12:13:52.197433"
}
]
req_tasks = [
{'task_name': 'iperf-server', 'qos_level': 'default'},
{'task_name': 'iperf-client', 'qos_level': 'default'}
]
rel_tasks = [
{
'tasks_id': '702148b2-4f21-4034-af8d-d11737f9f811',
'domain_name': 'Nep',
'package_name': 'iperf-client',
'composite_key': 'Nep-iperf-client',
'version': 'v1',
'package_type': 'GENERIC',
'interoperability_tags': 'null',
'blacklisted_tags': 'null',
'task_create_time': '2024-11-13T12:13:52.190297'
},
{
'tasks_id': '95bc75a6-b292-484d-a65d-86fae2cb6b6f',
'domain_name': 'Nep',
'package_name': 'iperf-server',
'composite_key': 'Nep-iperf-server',
'version': 'v1',
'package_type': 'GENERIC',
'interoperability_tags': 'null',
'blacklisted_tags': 'null',
'task_create_time': '2024-11-13T12:13:52.195040'
}]
我有这个代码:
task_ids = [
d["tasks_id"]
for d in rel_tasks
for t in req_tasks
if d["package_name"] == t["task_name"]
]
resources = [
d
for t in req_tasks
for d in task_resources
if d["tasks_id"] in task_ids and d["qos_level"] == t["qos_level"]
]
print(resources)
返回:
[
{
"resource_id": "52a58a34-6b1b-49b7-b53d-2bc4bf72c172",
"domain_name": "Nep",
"tasks_id": "702148b2-4f21-4034-af8d-d11737f9f811",
"qos_level": "default",
"cpu_cores": 1,
"memory_mb": 128,
"storage_mb": 0,
"cpu_flops": 19177,
"gpu_flops": 0,
"gpu_memory_mb": 0,
"egress_network_bandwidth_gbps": 0,
"ingress_network_bandwidth_gbps": 0,
"create_time": "2024-11-13T12:13:52.192657",
},
{
"resource_id": "c34a4411-20d3-42eb-9f74-1336ab6ab024",
"domain_name": "Nep",
"tasks_id": "95bc75a6-b292-484d-a65d-86fae2cb6b6f",
"qos_level": "default",
"cpu_cores": 1,
"memory_mb": 128,
"storage_mb": 0,
"cpu_flops": 19177,
"gpu_flops": 0,
"gpu_memory_mb": 0,
"egress_network_bandwidth_gbps": 0,
"ingress_network_bandwidth_gbps": 0,
"create_time": "2024-11-13T12:13:52.197433",
},
{
"resource_id": "52a58a34-6b1b-49b7-b53d-2bc4bf72c172",
"domain_name": "Nep",
"tasks_id": "702148b2-4f21-4034-af8d-d11737f9f811",
"qos_level": "default",
"cpu_cores": 1,
"memory_mb": 128,
"storage_mb": 0,
"cpu_flops": 19177,
"gpu_flops": 0,
"gpu_memory_mb": 0,
"egress_network_bandwidth_gbps": 0,
"ingress_network_bandwidth_gbps": 0,
"create_time": "2024-11-13T12:13:52.192657",
},
{
"resource_id": "c34a4411-20d3-42eb-9f74-1336ab6ab024",
"domain_name": "Nep",
"tasks_id": "95bc75a6-b292-484d-a65d-86fae2cb6b6f",
"qos_level": "default",
"cpu_cores": 1,
"memory_mb": 128,
"storage_mb": 0,
"cpu_flops": 19177,
"gpu_flops": 0,
"gpu_memory_mb": 0,
"egress_network_bandwidth_gbps": 0,
"ingress_network_bandwidth_gbps": 0,
"create_time": "2024-11-13T12:13:52.197433",
},
]
这将返回列表中被重复的前两个字典。有没有办法改变我的列表理解,或者删除重复的结果,所以我得到这个:
[
{
"resource_id": "52a58a34-6b1b-49b7-b53d-2bc4bf72c172",
"domain_name": "Nep",
"tasks_id": "702148b2-4f21-4034-af8d-d11737f9f811",
"qos_level": "default",
"cpu_cores": 1,
"memory_mb": 128,
"storage_mb": 0,
"cpu_flops": 19177,
"gpu_flops": 0,
"gpu_memory_mb": 0,
"egress_network_bandwidth_gbps": 0,
"ingress_network_bandwidth_gbps": 0,
"create_time": "2024-11-13T12:13:52.192657",
},
{
"resource_id": "c34a4411-20d3-42eb-9f74-1336ab6ab024",
"domain_name": "Nep",
"tasks_id": "95bc75a6-b292-484d-a65d-86fae2cb6b6f",
"qos_level": "default",
"cpu_cores": 1,
"memory_mb": 128,
"storage_mb": 0,
"cpu_flops": 19177,
"gpu_flops": 0,
"gpu_memory_mb": 0,
"egress_network_bandwidth_gbps": 0,
"ingress_network_bandwidth_gbps": 0,
"create_time": "2024-11-13T12:13:52.197433",
},
]
要根据内容对字典结果列表进行重复数据删除,您可以使用集合来跟踪已看到的条目和列表理解来过滤结果,这样您就可以基于
tasks_id
和 qos_level
进行资源重复数据删除,例如这个-
task_resources = [
{
"resource_id": "52a58a34-6b1b-49b7-b53d-2bc4bf72c172",
"domain_name": "Nep",
"tasks_id": "702148b2-4f21-4034-af8d-d11737f9f811",
"qos_level": "default",
"cpu_cores": 1,
"memory_mb": 128,
"storage_mb": 0,
"cpu_flops": 19177,
"gpu_flops": 0,
"gpu_memory_mb": 0,
"egress_network_bandwidth_gbps": 0,
"ingress_network_bandwidth_gbps": 0,
"create_time": "2024-11-13T12:13:52.192657"
},
{
"resource_id": "8208915d-90b4-4a6c-a98c-e9eb965b4e6b",
"domain_name": "Nep",
"tasks_id": "702148b2-4f21-4034-af8d-d11737f9f811",
"qos_level": "low",
"cpu_cores": 1,
"memory_mb": 128,
"storage_mb": 0,
"cpu_flops": 19177,
"gpu_flops": 0,
"gpu_memory_mb": 0,
"egress_network_bandwidth_gbps": 0,
"ingress_network_bandwidth_gbps": 0,
"create_time": "2024-11-13T12:13:52.202177"
},
{
"resource_id": "c34a4411-20d3-42eb-9f74-1336ab6ab024",
"domain_name": "Nep",
"tasks_id": "95bc75a6-b292-484d-a65d-86fae2cb6b6f",
"qos_level": "default",
"cpu_cores": 1,
"memory_mb": 128,
"storage_mb": 0,
"cpu_flops": 19177,
"gpu_flops": 0,
"gpu_memory_mb": 0,
"egress_network_bandwidth_gbps": 0,
"ingress_network_bandwidth_gbps": 0,
"create_time": "2024-11-13T12:13:52.197433"
}
]
req_tasks = [
{'task_name': 'iperf-server', 'qos_level': 'default'},
{'task_name': 'iperf-client', 'qos_level': 'default'}
]
rel_tasks = [
{
'tasks_id': '702148b2-4f21-4034-af8d-d11737f9f811',
'domain_name': 'Nep',
'package_name': 'iperf-client',
'composite_key': 'Nep-iperf-client',
'version': 'v1',
'package_type': 'GENERIC',
'interoperability_tags': 'null',
'blacklisted_tags': 'null',
'task_create_time': '2024-11-13T12:13:52.190297'
},
{
'tasks_id': '95bc75a6-b292-484d-a65d-86fae2cb6b6f',
'domain_name': 'Nep',
'package_name': 'iperf-server',
'composite_key': 'Nep-iperf-server',
'version': 'v1',
'package_type': 'GENERIC',
'interoperability_tags': 'null',
'blacklisted_tags': 'null',
'task_create_time': '2024-11-13T12:13:52.195040'
}
]
task_ids = [
d["tasks_id"] for d in rel_tasks for t in req_tasks if d["package_name"] == t["task_name"]
]
# Deduplicate resources based on tasks_id and qos_level
seen = set()
resources = []
for t in req_tasks:
for d in task_resources:
if d["tasks_id"] in task_ids and d["qos_level"] == t["qos_level"]:
# Create a unique identifier for each resource
identifier = (d["tasks_id"], d["qos_level"])
if identifier not in seen:
seen.add(identifier)
resources.append(d)
print(resources)