因此,我正在尝试通过张量流服务为COCO服务,如果我检查模型,则会得到以下信息:
signature_def['serving_default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['inputs'] tensor_info:
dtype: DT_UINT8
shape: (-1, -1, -1, 3)
name: image_tensor:0
The given SavedModel SignatureDef contains the following output(s):
outputs['detection_boxes'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 100, 4)
name: detection_boxes:0
outputs['detection_classes'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 100)
name: detection_classes:0
outputs['detection_masks'] tensor_info:
dtype: DT_FLOAT
shape: (-1, -1, -1, -1)
name: detection_masks:0
outputs['detection_scores'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 100)
name: detection_scores:0
outputs['num_detections'] tensor_info:
dtype: DT_FLOAT
shape: (-1)
name: num_detections:0
Method name is: tensorflow/serving/predict
我的测试代码如下:
import json
import numpy as np
import cv2
import base64
import requests
import base64
import json
image = "./frames/IMG_0474.MOV/IMG_0474_100.jpg"
URL = "http://localhost:8501/v1/models/saved_model/versions/1:predict"
headers = {"content-type": "application/json"}
image_content = base64.b64encode(cv2.imread(image)).decode("utf-8")
body = {
"signature_name": "serving_default",
"inputs": [{"image": {"b64":image_content}}]
}
r = requests.post(URL, data=json.dumps(body), headers = headers)
print(r.text)
哪个产量:
"error": "JSON Value: {\n \"b64\": [massive long base64 string]}\n} Type: Object is not of expected type: uint8" }
也尝试过(结果相同):
body = {
"signature_name": "serving_default",
"instances": [{"inputs": {"b64":image_content}}]
}
最后(相同的结果):
body = {
"signature_name": "serving_default",
"inputs": {"b64":image_content}
}
我还在通过以下方式对文件进行base64编码之前再次进行了检查:
print(image.dtype)
输出是uint8!
[我也尝试过修改对象,即删除图像,只用“ b64”“ ...”放置数组-不高兴。
我想念什么?
尝试将图像加载到opencv中,并将其转换为列表并发送。您不必将其编码为base64格式。那应该可以了。
import json
import numpy as np
import cv2
import base64
import requests
import base64
import json
image = "./frames/IMG_0474.MOV/IMG_0474_100.jpg"
URL = "http://localhost:8501/v1/models/saved_model/versions/1:predict"
headers = {"content-type": "application/json"}
image_content = cv2.imread(image,1).astype('uint8').tolist()
body = {"instances": [{"inputs": image_content}]}
r = requests.post(URL, data=json.dumps(body), headers = headers)
print(r.text)