不会使用Pyspark读取Kafka的数据 我的Kafka主题中有一个流数据。我需要使用Pyspark的Pyspark DataFrame形式从主题中读取此数据。但是当我调用ReadStream功能时,我会不断收到错误...

问题描述 投票:0回答:3

Traceback (most recent call last): File "/home/nayanam/PycharmProjects/recommendation_engine/derivation/kafka_cons**umer_test.py", line 21, in <module> .option("subscribe", "near_line") \** File "/home/nayanam/anaconda3/lib/python3.5/site-packages/pyspark/sql/streaming.py", line 397, in load return self._df(self._jreader.load()) File "/home/nayanam/anaconda3/lib/python3.5/site-packages/py4j/java_gateway.py", line 1133, in __call__ answer, self.gateway_client, self.target_id, self.name) File "/home/nayanam/anaconda3/lib/python3.5/site-packages/pyspark/sql/utils.py", line 63, in deco return f(*a, **kw) File "/home/nayanam/anaconda3/lib/python3.5/site-packages/py4j/protocol.py", line 319, in get_return_value format(target_id, ".", name), value) py4j.protocol.Py4JJavaError: An error occurred while calling o35.load. : java.lang.ClassNotFoundException: Failed to find data source: kafka. Please find packages at http://spark.apache.org/third-party-projects.html at org.apache.spark.sql.execution.datasources.DataSource$.lookupDataSource(DataSource.scala:549) at org.apache.spark.sql.execution.datasources.DataSource.providingClass$lzycompute(DataSource.scala:86) at org.apache.spark.sql.execution.datasources.DataSource.providingClass(DataSource.scala:86) at org.apache.spark.sql.execution.datasources.DataSource.sourceSchema(DataSource.scala:195) at org.apache.spark.sql.execution.datasources.DataSource.sourceInfo$lzycompute(DataSource.scala:87) at org.apache.spark.sql.execution.datasources.DataSource.sourceInfo(DataSource.scala:87) at org.apache.spark.sql.execution.streaming.StreamingRelation$.apply(StreamingRelation.scala:30) at org.apache.spark.sql.streaming.DataStreamReader.load(DataStreamReader.scala:150) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at py4j.Gateway.invoke(Gateway.java:280) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:214) at java.lang.Thread.run(Thread.java:748) Caused by: java.lang.ClassNotFoundException: kafka.DefaultSource at java.net.URLClassLoader.findClass(URLClassLoader.java:381) at java.lang.ClassLoader.loadClass(ClassLoader.java:424) at java.lang.ClassLoader.loadClass(ClassLoader.java:357) at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$21$$anonfun$apply$12.apply(DataSource.scala:533) at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$21$$anonfun$apply$12.apply(DataSource.scala:533) at scala.util.Try$.apply(Try.scala:192) at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$21.apply(DataSource.scala:533) at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$21.apply(DataSource.scala:533) at scala.util.Try.orElse(Try.scala:84) at org.apache.spark.sql.execution.datasources.DataSource$.lookupDataSource(DataSource.scala:533) ... 18 more

	

我遇到了同样的问题。好吧,在Spark 2.3中,Pyspark接受-Jars选项,并且正在工作。因此,在此版本中,您需要的只是2个罐子:

spark-sql-kafka-0-10_2.11-2.3.2.jar
spark-streaming-kafka-0-10-assembly_2.11-2.3.2.jar

$ pyspark  --jars spark-sql-kafka-0-10_2.11-2.3.2.jar,spark-streaming-kafka-0-10-assembly_2.11-2.3.2.jar
我使用Spark 2.3.0,Scala 2.11.8和Kafka 0.10,可从apache.org
apache-spark pyspark apache-kafka spark-structured-streaming
3个回答
2
投票

如果您不想使用jar
,请通过此软件包

--packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.3.2,org.apache.spark:spark-streaming-kafka-0-10-assembly_2.11:2.3.2


1
投票

Scala12与Spark 3兼容,使用以下软件包:

org.apache.spark:spark-sql-kafka-0-10_2.12:3.0.0


Scala11与Spark 2兼容,使用以下软件包:

0
投票

	

最新问题
© www.soinside.com 2019 - 2025. All rights reserved.