但是当我称其为as
时fitted_model, history = fit_model(model, X_train_sequence_tensor,Y_train_sequence_tensor, epochs=100, val_set=val_set, time_windows=90, scaler=scaler)
在第一个时期之后停止。它不能按要求所有100个运行。 我试图在函数调用之外调用它,并且有效。
`#步骤3.2:适合模型 +我们通过一些验证 #监视验证损失和指标 #在每个时代的末尾 x_val_set = val_set [x_column_list] .Round(2)
#X_val_set.values = scaler.transform(X_val_set.values)
X_val_set[X_val_set.columns] = scaler.transform(X_val_set[X_val_set.columns] )
X_val_sequence = get_feature_array(X_val_set , X_column_list, 90)
X_val_sequence_tensor = tf.convert_to_tensor(X_val_sequence, dtype=tf.float32)
Y_val_set = val_set[Y_column_list].round(2)
Y_val_sequence = get_feature_array(Y_val_set , Y_column_list, 90)
Y_val_sequence_tensor = tf.convert_to_tensor(Y_val_sequence, dtype=tf.float32)
training_history = cnn1d_bilstm_model.fit(X_train_sequence_tensor,Y_train_sequence_tensor, epochs=200,
# We pass some validation for
# monitoring validation loss and metrics
# at the end of each epoch
validation_data=(X_val_sequence_tensor, Y_val_sequence_tensor))
我做错了什么?请任何帮助
也许问题是,在
fit_model
函数内部,epochs
model.fit
history = model.fit(X_train_sequence_tensor, Y_train_sequence_tensor, epochs=epochs,
validation_data=(X_val_sequence_tensor, Y_val_sequence_tensor))
在此,明确指出该模型的epochs
参数等于您传递给函数的epochs
参数。