拟合功能在时期1

问题描述 投票:0回答:1

但是当我称其为as

fitted_model, history = fit_model(model, X_train_sequence_tensor,Y_train_sequence_tensor,  epochs=100, val_set=val_set, time_windows=90, scaler=scaler) 

在第一个时期之后停止。它不能按要求所有100个运行。 我试图在函数调用之外调用它,并且有效。

`#步骤3.2:适合模型 +我们通过一些验证
#监视验证损失和指标
#在每个时代的末尾
x_val_set = val_set [x_column_list] .Round(2)

#X_val_set.values = scaler.transform(X_val_set.values) X_val_set[X_val_set.columns] = scaler.transform(X_val_set[X_val_set.columns] ) X_val_sequence = get_feature_array(X_val_set , X_column_list, 90) X_val_sequence_tensor = tf.convert_to_tensor(X_val_sequence, dtype=tf.float32) Y_val_set = val_set[Y_column_list].round(2) Y_val_sequence = get_feature_array(Y_val_set , Y_column_list, 90) Y_val_sequence_tensor = tf.convert_to_tensor(Y_val_sequence, dtype=tf.float32) training_history = cnn1d_bilstm_model.fit(X_train_sequence_tensor,Y_train_sequence_tensor, epochs=200, # We pass some validation for # monitoring validation loss and metrics # at the end of each epoch validation_data=(X_val_sequence_tensor, Y_val_sequence_tensor))

我做错了什么?请任何帮助

也许问题是,在
fit_model
函数内部,

epochs

中的

model.fit

参数不是作为命名参数传递的,而模型将
python machine-learning deep-learning
1个回答
0
投票
解释为其他内容。尝试将其更改为:

history = model.fit(X_train_sequence_tensor, Y_train_sequence_tensor, epochs=epochs, 
                    validation_data=(X_val_sequence_tensor, Y_val_sequence_tensor))
在此,明确指出该模型的
epochs
参数等于您传递给函数的
epochs
参数。
	

最新问题
© www.soinside.com 2019 - 2025. All rights reserved.