R 中的多项式混合效应模型

问题描述 投票:0回答:0

我想做一个具有随机效应的多项式模型,但我不知道怎么做。

模型看起来像这样:

native_driftertype ~treat+(1|replica)+(1|compartment/originhive)
,
native_driftertype
一个有 5 个水平的因素,
treat
一个有 3 个水平的因素,
replica
一个有 2 个水平的因素,
compartment
一个有 3 个水平的因素,以及
originhive
一个有 24 个水平的因素。

数据是这样的:

data6 <- structure(list(origin_hive = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 3L, 3L, 19L, 3L, 3L, 19L, 3L, 3L, 3L, 3L, 19L, 19L, 19L, 3L, 3L, 3L, 6L, 9L, 6L, 6L, 6L, 6L, 9L, 6L, 9L, 9L, 6L, 6L, 6L, 9L, 6L, 8L, 16L, 8L, 16L, 16L, 16L, 8L, 16L, 16L, 16L, 8L, 1L, 1L, 23L, 14L, 1L, 23L, 1L, 23L, 1L, 3L, 7L, 3L, 19L, 3L, 9L, 9L, 9L, 6L, 9L, 16L, 16L, 8L, 1L, 23L, 1L, 23L, 14L, 3L, 3L, 7L, 7L, 9L, 11L, 11L, 16L, 16L, 8L, 21L, 23L, 1L, 23L, 19L, 3L, 19L, 19L, 19L, 19L, 6L, 6L, 6L, 11L, 11L, 6L, 6L, 6L, 6L, 9L, 9L, 6L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 1L, 14L, 1L, 10L, 13L, 10L, 10L, 13L, 13L, 13L, 10L, 20L, 24L, 24L, 5L, 20L, 20L, 20L, 5L, 20L, 24L, 5L, 5L, 20L, 12L, 17L, 12L, 12L, 12L, 15L, 12L, 12L, 12L, 17L, 17L, 17L, 12L, 15L, 15L, 12L, 12L, 17L, 12L, 15L, 17L, 12L, 12L, 12L, 12L, 12L, 22L, 22L, 2L, 4L, 22L, 2L, 22L, 2L, 13L, 18L, 13L, 5L, 5L, 12L, 17L, 22L, 22L, 22L, 22L, 13L, 13L, 18L, 18L, 18L, 20L, 20L, 20L, 20L, 5L, 5L, 5L, 5L, 24L, 5L, 5L, 12L, 17L, 17L, 12L, 17L, 12L, 4L, 10L, 13L, 18L, 13L, 10L, 5L, 5L, 24L, 20L, 20L, 20L, 5L, 20L, 24L, 12L, 17L, 12L, 17L, 17L, 12L, 17L, 22L, 22L), levels = c("10C1", "10C2", "11C1", "11UV2", "12C2", "12UV1", "13G1", "14UV1", "16C1", "1UV2", "2G1", "2G2", "3C2", "4UV1", "4UV2", "5C1", "5C2", "6G2", "6UV1", "7G2", "8G1", "8G2", "9G1", "9UV2"), class = "factor"), treat = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 3L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 1L, 1L, 1L, 3L, 1L, 3L, 3L, 3L, 3L, 1L, 3L, 1L, 1L, 3L, 3L, 3L, 1L, 3L, 3L, 1L, 3L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 3L, 1L, 1L, 2L, 3L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 3L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 3L, 1L, 2L, 1L, 2L, 3L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 3L, 2L, 2L, 1L, 2L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 3L, 1L, 3L, 3L, 1L, 1L, 1L, 3L, 2L, 3L, 3L, 1L, 2L, 2L, 2L, 1L, 2L, 3L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 3L, 3L, 2L, 2L, 1L, 2L, 3L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 3L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 3L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 3L, 3L, 1L, 2L, 1L, 3L, 1L, 1L, 3L, 2L, 2L, 2L, 1L, 2L, 3L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L), levels = c("C", "G", "UV"), class = "factor"), native_driftertype = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L), levels = c("native", "Resident", "Transient", "Voyeur", "unknown"), class = "factor"), replica = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), levels = c("1", "2"), class = "factor"), compartment = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 3L, 1L, 2L, 3L, 2L, 3L, 2L, 2L, 3L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 3L, 2L, 3L, 1L, 2L, 2L, 3L, 3L, 2L, 3L, 3L, 2L, 2L, 1L, 3L, 3L, 2L, 3L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 3L, 1L, 3L, 3L, 1L, 1L, 1L, 3L, 2L, 3L, 3L, 1L, 2L, 2L, 2L, 1L, 2L, 3L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 3L, 3L, 2L, 2L, 1L, 2L, 3L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 3L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 3L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 3L, 3L, 1L, 2L, 1L, 3L, 1L, 1L, 3L, 2L, 2L, 2L, 1L, 2L, 3L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L), levels = c("12", "14", "16"), class = "factor")), row.names = c(NA, -464L ), class = "data.frame")
我尝试使用 brms 包中的 

brm 函数(拟合贝叶斯广义(非)线性多元多级模型),但是在运行以下模型时,出现以下错误:

fit=brm(native_driftertype\~treat+(1|replica)+(1|compartment/origin_hive), family = multinomial, data = data6)

brm(native_driftertype ~ treat + (1 | replica) + (1 | compartment/origin_hive) 错误,: 未使用的参数(族 = 多项式,数据 = data6)

r mixed-models multinomial random-effects glmm
© www.soinside.com 2019 - 2024. All rights reserved.