我是python新手,需要帮助!我正在练习python NLTK文本分类。这是我在http://www.laurentluce.com/posts/twitter-sentiment-analysis-using-python-and-nltk/上练习的代码示例
我试过这个
from nltk import bigrams
from nltk.probability import ELEProbDist, FreqDist
from nltk import NaiveBayesClassifier
from collections import defaultdict
train_samples = {}
with file ('positive.txt', 'rt') as f:
for line in f.readlines():
train_samples[line]='pos'
with file ('negative.txt', 'rt') as d:
for line in d.readlines():
train_samples[line]='neg'
f=open("test.txt", "r")
test_samples=f.readlines()
def bigramReturner(text):
tweetString = text.lower()
bigramFeatureVector = {}
for item in bigrams(tweetString.split()):
bigramFeatureVector.append(' '.join(item))
return bigramFeatureVector
def get_labeled_features(samples):
word_freqs = {}
for text, label in train_samples.items():
tokens = text.split()
for token in tokens:
if token not in word_freqs:
word_freqs[token] = {'pos': 0, 'neg': 0}
word_freqs[token][label] += 1
return word_freqs
def get_label_probdist(labeled_features):
label_fd = FreqDist()
for item,counts in labeled_features.items():
for label in ['neg','pos']:
if counts[label] > 0:
label_fd.inc(label)
label_probdist = ELEProbDist(label_fd)
return label_probdist
def get_feature_probdist(labeled_features):
feature_freqdist = defaultdict(FreqDist)
feature_values = defaultdict(set)
num_samples = len(train_samples) / 2
for token, counts in labeled_features.items():
for label in ['neg','pos']:
feature_freqdist[label, token].inc(True, count=counts[label])
feature_freqdist[label, token].inc(None, num_samples - counts[label])
feature_values[token].add(None)
feature_values[token].add(True)
for item in feature_freqdist.items():
print item[0],item[1]
feature_probdist = {}
for ((label, fname), freqdist) in feature_freqdist.items():
probdist = ELEProbDist(freqdist, bins=len(feature_values[fname]))
feature_probdist[label,fname] = probdist
return feature_probdist
labeled_features = get_labeled_features(train_samples)
label_probdist = get_label_probdist(labeled_features)
feature_probdist = get_feature_probdist(labeled_features)
classifier = NaiveBayesClassifier(label_probdist, feature_probdist)
for sample in test_samples:
print "%s | %s" % (sample, classifier.classify(bigramReturner(sample)))
但得到这个错误,为什么?
Traceback (most recent call last):
File "C:\python\naive_test.py", line 76, in <module>
print "%s | %s" % (sample, classifier.classify(bigramReturner(sample)))
File "C:\python\naive_test.py", line 23, in bigramReturner
bigramFeatureVector.append(' '.join(item))
AttributeError: 'dict' object has no attribute 'append'
双字母特征向量遵循与单字母特征向量完全相同的原理。因此,就像您提到的教程一样,您必须检查您将使用的任何文档中是否存在双字母组件功能。
至于bigram功能以及如何提取它们,我已经为它编写了代码。你可以简单地采用它们来改变教程中的变量“tweets”。
import nltk
text = "Hi, I want to get the bigram list of this string"
for item in nltk.bigrams (text.split()): print ' '.join(item)
而不是打印它们,你可以简单地将它们附加到“推文”列表,你很高兴!我希望这会有用。否则,如果您仍有问题,请告诉我。
请注意,在情绪分析等应用中,一些研究人员倾向于对单词进行标记并删除标点,而其他人则不这样做。从经验中我知道,如果你不删除标点符号,朴素贝叶斯的工作方式几乎相同,但是SVM的准确率会降低。您可能需要使用这些内容并确定哪些内容对您的数据集更有效。
编辑1:
有一本名为“Python自然语言处理”的书,我可以推荐给你。它包含bigrams的例子以及一些练习。但是,我认为如果没有它,你甚至可以解决这个问题。选择bigrams特征背后的想法是我们想要知道单词A出现在我们的语料库中然后是单词B的概率。所以,例如在句子中
“我开一辆卡车”
单词unigram功能将是这四个单词中的每一个,而bigram功能这个单词将是:
[“我开车”,“开车”,“卡车”]
现在您想要将这3个用作功能。所以代码函数bellow将字符串的所有bigrams放在名为bigramFeatureVector
的列表中。
def bigramReturner (tweetString):
tweetString = tweetString.lower()
tweetString = removePunctuation (tweetString)
bigramFeatureVector = []
for item in nltk.bigrams(tweetString.split()):
bigramFeatureVector.append(' '.join(item))
return bigramFeatureVector
请注意,您必须编写自己的removePunctuation
函数。你得到的上述函数的输出是二元组特征向量。您将在您提到的教程中处理unigram特征向量的方式完全相同。