我正在尝试编写一个用于压缩13张图像的vanilla autoencoder。但是我收到以下错误:
ValueError:不再支持train参数。使用chainer.using_config
图像的形状是(21,28,3)。
filelist = 'ex1.png', 'ex2.png',...11 other images
x = np.array([np.array(Image.open(fname)) for fname in filelist])
xs = x.astype('float32')/255.
class Autoencoder(Chain):
def __init__(self, activation=F.relu):
super().__init__()
with self.init_scope():
# encoder part
self.l1 = L.Linear(1764,800)
self.l2 = L.Linear(800,300)
# decoder part
self.l3 = L.Linear(300,800)
self.l4 = L.Linear(800,1764)
self.activation = activation
def forward(self,x):
h = self.encode(x)
x_recon = self.decode(h)
return x_recon
def __call__(self,x):
x_recon = self.forward(x)
loss = F.mean_squared_error(h, x)
return loss
def encode(self, x, train=True):
h = F.dropout(self.activation(self.l1(x)), train=train)
return self.activation(self.l2(x))
def decode(self, h, train=True):
h = self.activation(self.l3(h))
return self.l4(x)
n_epoch = 5
batch_size = 2
model = Autoencoder()
optimizer = optimizers.SGD(lr=0.05).setup(model)
train_iter = iterators.SerialIterator(xs,batch_size)
valid_iter = iterators.SerialIterator(xs,batch_size)
updater = training.StandardUpdater(train_iter,optimizer)
trainer = training.Trainer(updater,(n_epoch,"epoch"),out="result")
from chainer.training import extensions
trainer.extend(extensions.Evaluator(valid_iter, model, device=gpu_id))
trainer.run()
问题是因为模型中的节点数量还是其他?
你需要写“解码”部分。
当你采取mean_squared_error
损失时,h
和x
的形状必须相同。 AutoEncoder将原始的x
编码为小空间(100-dim)h
,但之后我们需要通过添加解码器部分从这个x'
重建h
。然后可以在这个重建的x'
上计算损失。
例如,如下(对不起,我没有测试它运行)
train
参数由global configs处理,所以你在dropout函数中不需要train
参数。
class Autoencoder(Chain):
def __init__(self, activation=F.relu):
super().__init__()
with self.init_scope():
# encoder part
self.l1 = L.Linear(1308608,500)
self.l2 = L.Linear(500,100)
# decoder part
self.l3 = L.Linear(100,500)
self.l4 = L.Linear(500,1308608)
self.activation = activation
def forward(self,x):
h = self.encode(x)
x_recon = self.decode(h)
return x_recon
def __call__(self,x):
x_recon = self.forward(x)
loss = F.mean_squared_error(h, x)
return loss
def encode(self, x):
h = F.dropout(self.activation(self.l1(x)))
return self.activation(self.l2(x))
def decode(self, h, train=True):
h = self.activation(self.l3(h))
return self.l4(x)
class Autoencoder(Chain):
def __init__(self, activation=F.relu):
super().__init__()
with self.init_scope():
# encoder part
self.l1 = L.Linear(1308608,500)
self.l2 = L.Linear(500,100)
# decoder part
self.l3 = L.Linear(100,500)
self.l4 = L.Linear(500,1308608)
self.activation = activation
def forward(self,x):
h = self.encode(x)
x_recon = self.decode(h)
return x_recon
def __call__(self,x):
x_recon = self.forward(x)
loss = F.mean_squared_error(h, x)
return loss
def encode(self, x, train=True):
h = F.dropout(self.activation(self.l1(x)), train=train)
return self.activation(self.l2(x))
def decode(self, h, train=True):
h = self.activation(self.l3(h))
return self.l4(x)
您还可以参考官方的变分自动编码器示例进行下一步: