创建人工智能聊天机器人,但出现回溯错误

问题描述 投票:0回答:3

我正在尝试用 python 创建一个人工智能聊天框。我尝试按照本教程进行操作:https://techwithtim.net/tutorials/ai-chatbot/part-1/但是我收到了很多弃用错误并收到一些回溯错误。 这是代码:

import json
import random
import tensorflow
import tflearn
import numpy
import sys
import pickle
import nltk
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()
nltk.download('punkt')


with open("trainingData.json") as file:
    data = json.load(file)

try:
    with open("data.pickle", "rb") as f:
        words, labels, training, output = pickle.load(f)
except:
    words = []
    labels = []
    docs_x = []
    docs_y = []

    for intent in data["intents"]:
        for pattern in intent["patterns"]:
            wrds = nltk.word_tokenize(pattern)
            words.extend(wrds)
            docs_x.append(wrds)
            docs_y.append(intent["tag"])

        if intent["tag"] not in labels:
            labels.append(intent["tag"])

    words = [stemmer.stem(w.lower()) for w in words if w != "?"]
    words = sorted(list(set(words)))

    labels = sorted(labels)

    training = []
    output = []

    out_empty = [0 for _ in range(len(labels))]

    for x, doc in enumerate(docs_x):
        bag = []

        wrds = [stemmer.stem(w.lower()) for w in doc]

        for w in words:
            if w in wrds:
                bag.append(1)
            else:
                bag.append(0)

        output_row = out_empty[:]
        output_row[labels.index(docs_y[x])] = 1

        training.append(bag)
        output.append(output_row)

    training = numpy.array(training)
    output = numpy.array(output)

    with open("data.pickle", "wb") as f:
        pickle.dump((words, labels, training, output), f)

tensorflow.reset_default_graph()

net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)

model = tflearn.DNN(net)

try:
    model.load("model.tflearn")
except:
    model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True)
    model.save("model.tflearn")


def bag_of_words(s, words):
    bag = [0 for _ in range(len(words))]

    s_words = nltk.word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words]

    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1

    return numpy.array(bag)


def chat():
    print("Start talking with the bot (type quit to stop)!")
    while True:
        inp = input("You: ")
        if inp.lower() == "quit":
            break

        results = model.predict([bag_of_words(inp, words)])
        results_index = numpy.argmax(results)
        tag = labels[results_index]

        for tg in data["intents"]:
            if tg['tag'] == tag:
                responses = tg['responses']

        print(random.choice(responses))

chat()

这是我遇到的错误。如何修复弃用错误、回溯错误?

enter image description here

这是错误的文本:

Run id: VOB3W4
Log directory: /tmp/tflearn_logs/
---------------------------------
Training samples: 20
Validation samples: 0
--
--
Traceback (most recent call last):
  File "script.py", line 91, in <module>
    model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True)
  File "/usr/local/lib/python2.7/site-packages/tflearn/models/dnn.py", line 216, in fit
    callbacks=callbacks)
  File "/usr/local/lib/python2.7/site-packages/tflearn/helpers/trainer.py", line 339, in fit
    show_metric)
  File "/usr/local/lib/python2.7/site-packages/tflearn/helpers/trainer.py", line 816, in _train
    tflearn.is_training(True, session=self.session)
  File "/usr/local/lib/python2.7/site-packages/tflearn/config.py", line 95, in is_training
    tf.get_collection('is_training_ops')[0].eval(session=session)
  File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 731, in eval
    return _eval_using_default_session(self, feed_dict, self.graph, session)
  File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 5579, in _eval_using_default_session
    return session.run(tensors, feed_dict)
  File "/usr/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 950, in run
    run_metadata_ptr)
  File "/usr/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 1096, in _run
    raise RuntimeError('Attempted to use a closed Session.')
RuntimeError: Attempted to use a closed Session.
python tensorflow traceback
3个回答
3
投票

启动文件

"model.tflearn"
不存在,当代码尝试加载此文件并运行
try/except
fit()
 时,
save()

应该捕获错误
try:
    model.load("model.tflearn")
except:
    model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True)
    model.save("model.tflearn")

但似乎这个错误关闭了

tf.session()
,因此它无法正确运行
fit()

如果用

try/except
删除
load()
并仅保留
fit()
save()
那么创建模型并将其保存在文件中没有问题。

model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True)
model.save("model.tflearn")

创建文件

"model.ftlearn"
后,您可以再次使用
try/except
load()
,如果您不删除带有模型的文件,它应该可以工作。


更好的解决方案应该检查文件是否存在 - 但它将数据保存在几个文件中

"model.tflearn.index"
"model.tflearn.meta"
"model.tflearn.data-00000-of-00001"
因此它应该检查此文件之一而不是
"model.tflearn"

使用

import os

if os.path.exists("model.tflearn.meta"):
    model.load("model.tflearn")
else:
    model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True)
    model.save("model.tflearn")

而不是

try:
    model.load("model.tflearn")
except:
    model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True)
    model.save("model.tflearn")

编辑:看来这个问题至少存在2年了:RuntimeError:尝试在tflearn中使用关闭的会话


0
投票

您好,看起来您使用的是tensorflow,请尝试使用OpenAI 和next.js。我在这篇博文中解释了这一点:https://www.brendanmulhern.blog/posts/make-your-own-ai-chatbot-website-with-next-js-and-openai-course


-1
投票

尝试这样做:

try:
    model.load("model3.tflearn")
except:
    model = tflearn.DNN(net)
    model.fit(training,output, n_epoch = 1000, batch_size = 8, show_metric = True)
    model.save("model3.tflearn")
© www.soinside.com 2019 - 2024. All rights reserved.