我怎样才能让多个滚动回归蒙山Y1的依赖性和Y2,Y3等作为单独的回归自变量:
见下面例子:
library(xts)
df=data.frame(y1=rnorm(300),y2=rnorm(300),y3=rnorm(300),y4=rnorm(300),y5=rnorm(300),y6=rnorm(300))
data <- xts(df, Sys.Date()-300:1)
下面我做Y1超过Y2滚动相关
rollingb <- rollapply(zoo(data),
width=20,
FUN = function(Z)
{
t = lm(formula=y1~ y2, data = as.data.frame(Z), na.rm=T);
return(t$coef)
},
by.column=FALSE, align="right")
结果看起来不错
plot(rollingb)
但是现在我想测试Y1〜Y3,Y1〜Y4,等等(我有总共120列的数据集)
以下后走得很近,但我无法重现的编码:
如何调整rollingb来完成这项工作?
通过@Yannis Vassiliadis所提供的解决方案有效,但是跟进的问题上升如何不公开所有的系数(贝塔)很好地成矩阵/ data.frame与相应的日期(如XTS)?
这个怎么样?
roll_lm <- lapply(2:ncol(data), function(x) rollapply(zoo(data[, c(1, x)]),
width=20,
FUN = function(Z)
{ Z = as.data.frame(Z);
t = lm(formula=Z[, 1]~Z[, 2]);
return(t$coef)
},
by.column=FALSE, align="right"))
输出与ncol(data) - 1
元件,其中该元件ith
是从y1
的上yi
滚动回归的结果的列表。
此外,您还可以添加:
names(roll_lm) <- paste0("y1~y",2:6)
roll_lm2 <- plyr::rbind.fill.matrix(roll_lm)
roll_lm3 <- cbind(roll_lm2, rep(names(roll_lm), each = 281)) # just to keep track of the names
您可以从map
使用purrr
打造沿y1 ~ y2
和y1 ~ y3
的线公式的列表。然后在lm
使用这些公式。
# these are the packages we are using
library(purrr)
library(useful)
library(coefplot)
# here's your data
df=data.frame(y1=rnorm(300),y2=rnorm(300),y3=rnorm(300),y4=rnorm(300),y5=rnorm(300),y6=rnorm(300))
# keep track of the response variable
response <- 'y1'
# we'll assume all the other variables are predictors
predictors <- setdiff(names(df), response)
# fit a bunch of models
models <- predictors %>%
# for each predictor build a formula like y1 ~ y2
map(~build.formula(response, .x)) %>%
# for each of those fit a model
map(lm, data=df)
# plot them for good measure
multiplot(models)