我只想为一个班级(人)从Model Zoo中重新训练ssd_mobilenet_v1_0.75_depth_coco。
我从COCO 2017集创建了TF记录。这给出了64115个训练示例和2693个验证示例。
我在Google Colab上设置了一个使用对象检测API的笔记本。训练有效,但我的成绩确实很差:
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.003
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.002
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.005
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.049
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.131
这是在我添加到pipeline.config行fine_tune_checkpoint_type:'检测'后,如here所述,因为TF记录到缺少层。
配置中唯一的更改是:
train_config {
batch_size: 24
num_steps: 500
fine_tune_checkpoint_type: 'detection'
}
eval_config {
num_examples: 2693
}
当然添加路径。
我这样运行model_main.py
!python object_detection/model_main.py \
--pipeline_config_path="pipeline.config" \
--model_dir="training/" \
--alsologtostderr \
--num_train_steps=500
我将在更多步骤上运行此模型以处理整个数据集,但我认为12k示例足以获得更好的结果。知道这里发生了什么吗?
完整配置
model {
ssd {
num_classes: 1
image_resizer {
fixed_shape_resizer {
height: 300
width: 300
}
}
feature_extractor {
type: "ssd_mobilenet_v1"
depth_multiplier: 0.75
min_depth: 16
conv_hyperparams {
regularizer {
l2_regularizer {
weight: 3.99999989895e-05
}
}
initializer {
truncated_normal_initializer {
mean: 0.0
stddev: 0.0299999993294
}
}
activation: RELU_6
batch_norm {
decay: 0.97000002861
center: true
scale: true
epsilon: 0.0010000000475
train: true
}
}
override_base_feature_extractor_hyperparams: true
}
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
box_predictor {
convolutional_box_predictor {
conv_hyperparams {
regularizer {
l2_regularizer {
weight: 3.99999989895e-05
}
}
initializer {
random_normal_initializer {
mean: 0.0
stddev: 0.00999999977648
}
}
activation: RELU_6
batch_norm {
decay: 0.97000002861
center: true
scale: true
epsilon: 0.0010000000475
train: true
}
}
min_depth: 0
max_depth: 0
num_layers_before_predictor: 0
use_dropout: false
dropout_keep_probability: 0.800000011921
kernel_size: 1
box_code_size: 4
apply_sigmoid_to_scores: false
class_prediction_bias_init: -4.59999990463
}
}
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.20000000298
max_scale: 0.949999988079
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.333299994469
}
}
post_processing {
batch_non_max_suppression {
score_threshold: 0.300000011921
iou_threshold: 0.600000023842
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
normalize_loss_by_num_matches: true
loss {
localization_loss {
weighted_smooth_l1 {
delta: 1.0
}
}
classification_loss {
weighted_sigmoid_focal {
gamma: 2.0
alpha: 0.75
}
}
classification_weight: 1.0
localization_weight: 1.0
}
encode_background_as_zeros: true
normalize_loc_loss_by_codesize: true
inplace_batchnorm_update: true
freeze_batchnorm: false
}
}
train_config {
batch_size: 24
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
ssd_random_crop {
}
}
sync_replicas: true
optimizer {
momentum_optimizer {
learning_rate {
cosine_decay_learning_rate {
learning_rate_base: 0.899999976158
total_steps: 10000
warmup_learning_rate: 0.300000011921
warmup_steps: 300
}
}
momentum_optimizer_value: 0.899999976158
}
use_moving_average: false
}
fine_tune_checkpoint: "/content/ssd_mobilenet_v1_0.75_depth_300x300_coco14_sync_2018_07_03/model.ckpt"
fine_tune_checkpoint_type: 'detection'
num_steps: 500
startup_delay_steps: 0.0
replicas_to_aggregate: 8
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader {
label_map_path: "/content/classes.pbtxt"
tf_record_input_reader {
input_path: "/content/gdrive/My Drive/coco_train.record"
}
}
eval_config {
num_examples: 2693
metrics_set: "coco_detection_metrics"
use_moving_averages: false
}
eval_input_reader {
label_map_path: "/content/classes.pbtxt"
shuffle: false
num_readers: 1
tf_record_input_reader {
input_path: "/content/gdrive/My Drive/coco_val.record"
}
}
编辑在27k / 53k步骤之后
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.005
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.020
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.001
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.012
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.016
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.048
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.048
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.130
基本上它在评估图像上放了一个具有51%概率的盒子(这里只是一个例子:]
我正在训练一个单一类别的对象检测模型(以检测火)。我已经使用SSD mobileNet V2训练了模型。我已经在Google colab上对其进行了培训。我正在寻找一种计算平均精度的方法。有人可以分享方法/代码吗?我真的很困惑,因为它是单个类检测。我是机器学习的新手。谢谢