我正在尝试在 Spark 编码中创建 kafka 消费者,在创建时出现异常。我的目标是我必须从主题中读取内容并需要写入 HDFS 路径。
scala> df2.printSchema()
root
|-- key: binary (nullable = true)
|-- value: binary (nullable = true)
|-- topic: string (nullable = true)
|-- partition: integer (nullable = true)
|-- offset: long (nullable = true)
|-- timestamp: timestamp (nullable = true)
|-- timestampType: integer (nullable = true)
scala> print(df1)
[key: binary, value: binary ... 5 more fields]
我不会在该主题中提供任何输入,即使它采用这 6 个值作为输入。
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.types.StructField
import spark.implicits._
object Read {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder()
.appName("spark Oracle Kafka")
.master("local")
.getOrCreate()
val df2 = spark
.read
.format("kafka")
.option("kafka.bootstrap.servers", "kafka server ip address i have given")
.option("subscribe", "topic20190904")
.load()
print(df1)//it is return some values
df2.show() it's throwing exception i hope it's not dataframe.
df2.write.parquet("/user/xrrn5/abcd")// I am getting java.lang.AbstractMethodError
java.lang.AbstractMethodError at rg.apache.spark.internal.Logging$class.initializeLogIfNecessary(Logging.scala)
要将数据从 Kafka 写入 HDFS,您实际上不需要任何代码 - 您只需使用 Kafka Connect,它是 Apache Kafka 的一部分。这是一个示例配置:
{
"name": "hdfs-sink",
"config": {
"connector.class": "io.confluent.connect.hdfs.HdfsSinkConnector",
"tasks.max": "1",
"topics": "test_hdfs",
"hdfs.url": "hdfs://localhost:9000",
"flush.size": "3",
"name": "hdfs-sink"
}
}
请参阅此处,了解有关连接器的文档。