拟合函数在时期1

问题描述 投票:0回答:2

但是当我称其为as

fitted_model, history = fit_model(model, X_train_sequence_tensor,Y_train_sequence_tensor, 
                    epochs=100, val_set=val_set, time_windows=90, scaler=scaler)

在第一个时期之后停止。它不能按要求所有100个运行。 我试图在函数调用之外调用它,并且有效。

`# Step 3.2 : Fit the model + We pass some validation for # monitoring validation loss and metrics # at the end of each epoch X_val_set = val_set[X_column_list].round(2) #X_val_set.values = scaler.transform(X_val_set.values) X_val_set[X_val_set.columns] = scaler.transform(X_val_set[X_val_set.columns] ) X_val_sequence = get_feature_array(X_val_set , X_column_list, 90) X_val_sequence_tensor = tf.convert_to_tensor(X_val_sequence, dtype=tf.float32) Y_val_set = val_set[Y_column_list].round(2) Y_val_sequence = get_feature_array(Y_val_set , Y_column_list, 90) Y_val_sequence_tensor = tf.convert_to_tensor(Y_val_sequence, dtype=tf.float32) training_history = cnn1d_bilstm_model.fit(X_train_sequence_tensor,Y_train_sequence_tensor, epochs=200, # We pass some validation for # monitoring validation loss and metrics # at the end of each epoch validation_data=(X_val_sequence_tensor, Y_val_sequence_tensor))
我做错了什么?

如果没有明确传递,则Python可以使用默认值,该值可能是
epochs
或其他意外值。明确传递

None

确保该函数使用呼叫者意图的值。
python machine-learning deep-learning
2个回答
1
投票

epochs=epochs

    
也许问题是,在
def fit_model(model, X_train_sequence_tensor,Y_train_sequence_tensor, epochs, val_set, time_windows, scaler): X_column_list = [item for item in val_set.columns.to_list() if item not in ['date', 'user', 'rank','rank_group', 'counts', 'target']] X_val_set = val_set[X_column_list].round(2) X_val_set[X_val_set.columns] = scaler.transform(X_val_set[X_val_set.columns] ) X_val_sequence = get_feature_array(X_val_set , X_column_list, time_windows) X_val_sequence_tensor = tf.convert_to_tensor(X_val_sequence, dtype=tf.float32) Y_column_list = ['target'] Y_val_set = val_set[Y_column_list].round(2) Y_val_sequence = get_feature_array(Y_val_set , Y_column_list, time_windows) Y_val_sequence_tensor = tf.convert_to_tensor(Y_val_sequence, dtype=tf.float32) try: history = model.fit(X_train_sequence_tensor, Y_train_sequence_tensor, epochs=epochs, validation_data=(X_val_sequence_tensor, Y_val_sequence_tensor)) except Exception as e: print(f"Training stopped due to an error: {e}") return model, history fitted_model, history = fit_model(model, X_train_sequence_tensor,Y_train_sequence_tensor, epochs=100, val_set=val_set, time_windows=90, scaler=scaler) # Print Training History print("Training Completed Successfully!")
函数内部,
fit_model

中的

epochs

参数不是作为命名参数传递的,而模型将
model.fit
解释为其他内容。尝试将其更改为:

1
投票
epochs

在此,明确指出该模型的

history = model.fit(X_train_sequence_tensor, Y_train_sequence_tensor, epochs=epochs, 
                    validation_data=(X_val_sequence_tensor, Y_val_sequence_tensor))
参数等于您传递给函数的
epochs
参数。
	
最新问题
© www.soinside.com 2019 - 2025. All rights reserved.