BigInteger:以可扩展的方法计算小数位数

问题描述 投票:0回答:7

我需要计算

BigInteger
的小数位数。例如:

  • 99
    返回
    2
  • 1234
    返回
    4
  • 9999
    返回
    4
  • 12345678901234567890
    返回
    20

我需要这样做对于具有

BigInteger
十进制数字和更多
184948
我怎样才能快速且可扩展地做到这一点?

转换为字符串方法很慢:

public String getWritableNumber(BigInteger number) {
   // Takes over 30 seconds for 184948 decimal digits
   return "10^" + (number.toString().length() - 1);
}

这种 loop-devide-by-ten 方法甚至更慢:

public String getWritableNumber(BigInteger number) {
    int digitSize = 0;
    while (!number.equals(BigInteger.ZERO)) {
        number = number.divide(BigInteger.TEN);
        digitSize++;
    }
    return "10^" + (digitSize - 1);
}

有没有更快的方法?

java biginteger
7个回答
16
投票

这是基于 Dariusz 的回答的快速方法:

public static int getDigitCount(BigInteger number) {
  double factor = Math.log(2) / Math.log(10);
  int digitCount = (int) (factor * number.bitLength() + 1);
  if (BigInteger.TEN.pow(digitCount - 1).compareTo(number) > 0) {
    return digitCount - 1;
  }
  return digitCount;
}

以下代码测试数字 1、9、10、99、100、999、1000 等一直到一万位:

public static void test() {
  for (int i = 0; i < 10000; i++) {
    BigInteger n = BigInteger.TEN.pow(i);
    if (getDigitCount(n.subtract(BigInteger.ONE)) != i || getDigitCount(n) != i + 1) {
      System.out.println("Failure: " + i);
    }
  }
  System.out.println("Done");
}

这可以在不到一秒的时间内检查

BigInteger
184,948
十进制数字以及更多数字。


10
投票

这看起来正在发挥作用。我还没有运行详尽的测试,也没有运行任何时间测试,但它似乎有一个合理的运行时间。

public class Test {
  /**
   * Optimised for huge numbers.
   *
   * http://en.wikipedia.org/wiki/Logarithm#Change_of_base
   *
   * States that log[b](x) = log[k](x)/log[k](b)
   *
   * We can get log[2](x) as the bitCount of the number so what we need is
   * essentially bitCount/log[2](10). Sadly that will lead to inaccuracies so
   * here I will attempt an iterative process that should achieve accuracy.
   *
   * log[2](10) = 3.32192809488736234787 so if I divide by 10^(bitCount/4) we
   * should not go too far. In fact repeating that process while adding (bitCount/4)
   * to the running count of the digits will end up with an accurate figure
   * given some twiddling at the end.
   * 
   * So here's the scheme:
   * 
   * While there are more than 4 bits in the number
   *   Divide by 10^(bits/4)
   *   Increase digit count by (bits/4)
   * 
   * Fiddle around to accommodate the remaining digit - if there is one.
   * 
   * Essentially - each time around the loop we remove a number of decimal 
   * digits (by dividing by 10^n) keeping a count of how many we've removed.
   * 
   * The number of digits we remove is estimated from the number of bits in the 
   * number (i.e. log[2](x) / 4). The perfect figure for the reduction would be
   * log[2](x) / 3.3219... so dividing by 4 is a good under-estimate. We 
   * don't go too far but it does mean we have to repeat it just a few times.
   */
  private int log10(BigInteger huge) {
    int digits = 0;
    int bits = huge.bitLength();
    // Serious reductions.
    while (bits > 4) {
      // 4 > log[2](10) so we should not reduce it too far.
      int reduce = bits / 4;
      // Divide by 10^reduce
      huge = huge.divide(BigInteger.TEN.pow(reduce));
      // Removed that many decimal digits.
      digits += reduce;
      // Recalculate bitLength
      bits = huge.bitLength();
    }
    // Now 4 bits or less - add 1 if necessary.
    if ( huge.intValue() > 9 ) {
      digits += 1;
    }
    return digits;
  }

  // Random tests.
  Random rnd = new Random();
  // Limit the bit length.
  int maxBits = BigInteger.TEN.pow(200000).bitLength();

  public void test() {
    // 100 tests.
    for (int i = 1; i <= 100; i++) {
      BigInteger huge = new BigInteger((int)(Math.random() * maxBits), rnd);
      // Note start time.
      long start = System.currentTimeMillis();
      // Do my method.
      int myLength = log10(huge);
      // Record my result.
      System.out.println("Digits: " + myLength+ " Took: " + (System.currentTimeMillis() - start));
      // Check the result.
      int trueLength = huge.toString().length() - 1;
      if (trueLength != myLength) {
        System.out.println("WRONG!! " + (myLength - trueLength));
      }
    }
  }

  public static void main(String args[]) {
    new Test().test();
  }

}

在我的 Celeron M 笔记本电脑上花了大约 3 秒,所以在一些像样的套件上应该会达到 2 秒以下。


9
投票

我认为您可以使用 bitLength() 获取 log2 值,然后 将基数更改为 10

但是,结果可能有一位数的错误,所以这只是一个近似值。

但是,如果可以接受,您始终可以在结果上加 1 并将其限制为“最多”。或者,减去 1,并得到 至少


2
投票
BigInteger

转换为

BigDecimal
,然后使用这个
answer
来计算位数。这似乎比使用 BigInteger.toString() 更有效,因为这将为
String
表示分配内存。
    private static int numberOfDigits(BigInteger value) {
        return significantDigits(new BigDecimal(value));
    }

    private static int significantDigits(BigDecimal value) {
        return value.scale() < 0
               ? value.precision() - value.scale()
               : value.precision();
    }



1
投票

此方法根据给定值计算以 10 为底的对数的整数部分。但是,它没有使用循环除法,而是使用类似于平方求幂的技术。

这是一个实现前面提到的运行时的粗略实现:

public static BigInteger log(BigInteger base,BigInteger num) { /* The technique tries to get the products among the squares of base * close to the actual value as much as possible without exceeding it. * */ BigInteger resultSet = BigInteger.ZERO; BigInteger actMult = BigInteger.ONE; BigInteger lastMult = BigInteger.ONE; BigInteger actor = base; BigInteger incrementor = BigInteger.ONE; while(actMult.multiply(base).compareTo(num)<1) { int count = 0; while(actMult.multiply(actor).compareTo(num)<1) { lastMult = actor; //Keep the old squares actor = actor.multiply(actor); //Square the base repeatedly until the value exceeds if(count>0) incrementor = incrementor.multiply(BigInteger.valueOf(2)); //Update the current exponent of the base count++; } if(count == 0) break; /* If there is no way to multiply the "actMult" * with squares of the base (including the base itself) * without keeping it below the actual value, * it is the end of the computation */ actMult = actMult.multiply(lastMult); resultSet = resultSet.add(incrementor); /* Update the product and the exponent * */ actor = base; incrementor = BigInteger.ONE; //Reset the values for another iteration } return resultSet; } public static int digits(BigInteger num) { if(num.equals(BigInteger.ZERO)) return 1; if(num.compareTo(BigInteger.ZERO)<0) num = num.multiply(BigInteger.valueOf(-1)); return log(BigInteger.valueOf(10),num).intValue()+1; }

希望这会有所帮助。


0
投票

显然你可以将它转换成字符串并检查长度,但这就是......我能说什么......丑陋。

如果不是
    BigInt
  • (比如少于 16 位数字)
    Math.floor(Math.log10(number))
    应该这样做。
    如果它是 
  • BigInt
  • ,那么您始终可以将它
    n
    乘以
    1e16
    ,直到余数小于
    1e16
    。那么位数是
    
    
n * 16 + Math.floor(Math.log10(remainder))

    


0
投票

unsigned approx_digits_in_base(unsigned bits, unsigned base){ // approximate the number of digits for a given number of bits (suitable to malloc). static const unsigned char logs[] = {40, 63, 80, 92, 103, 112, 120, 126, 132, 138, 143, 148, 152, 156, 160, 163, 166, 169, 172, 175, 178, 180, 183, 185, 188, 190, 192, 194, 196, 198, 200, 201, 203, 205, 206, 208, 209, 211, 212, 214, 215, 217, 218, 219, 220, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238}; return 2 + !bits + bits * 40 / logs[base - 2]; // including a bit for the sign. }

	
© www.soinside.com 2019 - 2024. All rights reserved.