当我试图在张量流中初始化变量时,我正在超越异常。下面是代码。有人可以帮忙吗?
import tensorflow as tf
node1 = tf.constant(3.0, dtype=tf.float32)
node2 = tf.constant(4.0) # also tf.float32 implicitly
print(node1, node2)
init_g = tf.global_variables_initializer()
init_l = tf.local_variables_initializer()
sess = tf.Session()
sess.run(init_g)
sess.run(init_l)
print(sess.run([node1, node2]))
node3 = tf.add(node1, node2)
print(node3) #prints type in tensorflow
print(sess.run([node3]))
node4 = tf.Variable([.3], dtype=tf.float32)
print(sess.run([node4]))
当我初始化全局变量并在之后创建新的变量/操作时,会发生这种情况
试试这个
import tensorflow as tf
node1 = tf.constant(3.0, dtype=tf.float32)
node2 = tf.constant(4.0) # also tf.float32 implicitly
node3 = tf.add(node1, node2)
node4 = tf.Variable([.3], dtype=tf.float32)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
print(node1, node2)
print(sess.run([node1, node2]))
print(node3) #prints type in tensorflow
print(sess.run([node3]))
print(sess.run([node4]))
想法是首先构建计算,当然包括变量,然后使用sess.run()
调用所需的操作