当我运行程序时,出现此错误:
运行时错误:张量的元素 0 不需要 grad 并且没有 grad_fn
但是我设置了
gen_y = torch.tensor(gen_y,requires_grad=True)
,但这并没有帮助,gen_y.grad_fn 是 None 。我也尝试了x = torch.tensor(x,requires_grad=True)
,它也不起作用。我猜这可能是与pytorch版本有关的问题。我该如何解决这个问题?
def training(self, net, datasets):
"""
input:
net: (object) model & optimizer
datasets : (list) [train, val] dataset object
"""
args = self.args
net.model.train()
steps = len(datasets[0]) // args.batch_size
if args.trigger == 'epoch':
args.epochs = args.terminal
args.iters = steps * args.terminal
args.iter_interval = steps * args.interval
else:
args.epochs = args.terminal // steps + 1
args.iters = args.terminal
args.iter_interval = args.interval
train_loss, train_acc = 0, 0
start = time.time()
for epoch in range(1, args.epochs + 1):
self.epoch = epoch
# setup data loader
data_loader = DataLoader(datasets[0], args.batch_size, num_workers=4,
shuffle=True)
batch_iterator = iter(data_loader)
for step in range(steps):
self.iter += 1
if self.iter > args.iters:
self.iter -= 1
break
# convert numpy.ndarray into pytorch tensor
x, y = next(batch_iterator)
x = Variable(x)
#None
y = Variable(y)
if args.cuda:
x = x.cuda()
y = y.cuda()
# training
x = torch.tensor(x,requires_grad=True)
gen_y = net.model(x)
gen_y = torch.tensor(gen_y,requires_grad=True)
print(gen_y.requires_grad)
print(gen_y.grad_fn)
if self.is_multi:
gen_y = gen_y[0]
y = y[0]
loss = F.binary_cross_entropy(gen_y, y)
# Update generator parameters
net.optimizer.zero_grad()
loss.backward()
我有同样的错误,
requires_grad = True
,不起作用。如果您希望能够向后调用 .grad (以获得梯度惩罚的梯度),您需要给它 create_graph=True
。我相信你提到的错误不是完整的错误,如果你的错误是:
> usr/local/lib/python3.6/dist-packages/torch/autograd/__init__.py in.
backward(tensors, grad_tensors, retain_graph, create_graph, grad_variables)
97 Variable._execution_engine.run_backward(
tensors, grad_tensors, retain_graph, create_graph,
---> 99 allow_unreachable=True) # allow_unreachable flag
然后转到“tensor.py”文件并将
create_graph = False
更改为 create_graph = True