我正在尝试重现本教程,了解如何绘制类似散点图的地图。下面是完整的代码和输出:
library(readr)
library(dplyr)
library(DT)
datatable(rladies, rownames = FALSE,
options = list(pageLength = 5))
url_csv <- 'https://raw.githubusercontent.com/d4tagirl/R-Ladies-growth-maps/master/rladies.csv'
rladies <- read_csv(url(url_csv)) %>%
select(-1)
library(ggplot2)
library(maps)
library(ggthemes)
world <- ggplot() +
borders("world", colour = "gray85", fill = "gray80") +
theme_map()
map <- world +
geom_point(aes(x = lon, y = lat, size = followers),
data = rladies,
colour = 'purple', alpha = .5) +
scale_size_continuous(range = c(1, 8),
breaks = c(250, 500, 750, 1000)) +
labs(size = 'Followers')
我想从地图上删除南极洲,这样它就不会占用太多空白空间。我尝试遵循另一个类似的 Stackoverflow 问题的解决方案,如下所示:
world <- map_data("world") %>%
filter(region != "Antarctica") %>%
ggplot(aes(long, lat, group = paste(region, group))) +
geom_polygon() +
coord_fixed()
map <- world +
geom_point(aes(x = lon, y = lat, size = followers),
data = rladies,
colour = 'purple', alpha = .5) +
scale_size_continuous(range = c(1, 8),
breaks = c(250, 500, 750, 1000)) +
labs(size = 'Followers')
但是当我尝试显示地图时,出现以下错误:
粘贴错误(区域,组):找不到对象“区域”
还有其他方法可以去除南极洲吗?
更新:失败
subset
尝试
countries <- map_data("world")
map_df <- subset(countries, region != "Antarctica")
map_base <- ggplot(data = map_df, mapping = aes(x = long, y = lat, group = group)) + coord_fixed(1.3) + geom_polygon(color = "black", fill = "gray")
# The base map is created successfully but I cannot plot points on it
map_base + geom_point(aes(x = lon, y = lat, size = followers), data = rladies, colour = 'purple', alpha = .5)
错误:
eval(expr, envir, enclos) 中的错误:未找到对象“组”
根据 hrbmstr 的建议,这里是一个使用正确投影和 sf 包(使用 ggplot2 开发版本中的 geom_sf )的解决方案。请注意,我们使用 coord_sf 来设置限制。
library(sf)
world <- map_data("world")
world.sf <- sf::st_as_sf(world, coords = c("long", "lat"), crs = 4326) %>%
group_by(group) %>%
summarize(do_union = FALSE) %>%
st_cast("POLYGON") %>%
ungroup()
world <- ggplot() +
geom_sf(data = world.sf, colour = "gray85", fill = "gray80") +
coord_sf(ylim = c(-50, 90), datum = NA) +
theme(panel.background = element_rect(fill = 'white'))
world +
geom_point(aes(x = lon, y = lat, size = followers),
data = rladies,
colour = 'purple', alpha = .5) +
scale_size_continuous(range = c(1, 8),
breaks = c(250, 500, 750, 1000)) +
labs(size = 'Followers', x = NULL, y = NULL)
我们还可以使用
coord_cartesian(ylim = c(-50, 90))
来设置 y 限制。
library(ggplot2)
library(maps)
library(ggthemes)
world <- ggplot() +
borders("world", colour = "gray85", fill = "gray80") +
theme_map() +
coord_cartesian(ylim = c(-50, 90))
map <- world +
geom_point(aes(x = lon, y = lat, size = followers),
data = rladies,
colour = 'purple', alpha = .5) +
scale_size_continuous(range = c(1, 8),
breaks = c(250, 500, 750, 1000)) +
labs(size = 'Followers')
map
这是另一种方法,它使用过滤器和一行代码来使用其 3 字母代码删除南极洲:
library( tidyverse )
library( cowplot )
library( sf )
library( lwgeom )
library( rworldmap )
base_map <- getMap( resolution = "low" )
world_sf <- st_as_sf( base_map )
# Remove Penguinville
world_sf <- world_sf %>% filter( SOV_A3 != "ATA" )
# The rest of the answer uses the Winkel tripel projection.
crs_wintri <- "+proj=wintri +datum=WGS84 +no_defs +over"
world_wintri <- st_transform_proj(world_sf, crs = crs_wintri)
lats <- c(90:-90, -90:90, 90)
longs <- c(rep(c(180, -180), each = 181), 180)
wintri_outline <-
list(cbind(longs, lats)) %>%
st_polygon() %>%
st_sfc(
crs = "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs"
) %>%
st_sf() %>%
st_transform_proj(crs = crs_wintri)
# Layout the graticule and transform it to Winkel tripel.
grat_wintri <-
st_graticule(lat = c(-89.9, seq(-80, 80, 20), 89.9)) %>%
st_transform_proj(crs = crs_wintri)
ggplot() +
geom_sf(data = wintri_outline, fill = "#56B4E950", color = NA) +
geom_sf(data = grat_wintri, color = "gray30", size = 0.25/.pt) +
geom_sf(data = world_wintri, color = "black", size = 0.5/.pt) +
geom_sf(data = wintri_outline, fill = NA, color = "grey30", size = 0.5/.pt) +
coord_sf(datum = NULL) +
theme_map()
产品: