我是tensorflow keras和数据集的新手。任何人都可以帮助我理解为什么以下代码不起作用?
import tensorflow as tf
import tensorflow.keras as keras
import numpy as np
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.ops import iterator_ops
from tensorflow.python.keras.utils import multi_gpu_model
from tensorflow.python.keras import backend as K
data = np.random.random((1000,32))
labels = np.random.random((1000,10))
dataset = tf.data.Dataset.from_tensor_slices((data,labels))
print( dataset)
print( dataset.output_types)
print( dataset.output_shapes)
dataset.batch(10)
dataset.repeat(100)
inputs = keras.Input(shape=(32,)) # Returns a placeholder tensor
# A layer instance is callable on a tensor, and returns a tensor.
x = keras.layers.Dense(64, activation='relu')(inputs)
x = keras.layers.Dense(64, activation='relu')(x)
predictions = keras.layers.Dense(10, activation='softmax')(x)
# Instantiate the model given inputs and outputs.
model = keras.Model(inputs=inputs, outputs=predictions)
# The compile step specifies the training configuration.
model.compile(optimizer=tf.train.RMSPropOptimizer(0.001),
loss='categorical_crossentropy',
metrics=['accuracy'])
# Trains for 5 epochs
model.fit(dataset, epochs=5, steps_per_epoch=100)
它因以下错误而失败:
model.fit(x=dataset, y=None, epochs=5, steps_per_epoch=100)
File "/home/wuxinyu/pyEnv/lib/python3.5/site-packages/tensorflow/python/keras/engine/training.py", line 1510, in fit
validation_split=validation_split)
File "/home/wuxinyu/pyEnv/lib/python3.5/site-packages/tensorflow/python/keras/engine/training.py", line 994, in _standardize_user_data
class_weight, batch_size)
File "/home/wuxinyu/pyEnv/lib/python3.5/site-packages/tensorflow/python/keras/engine/training.py", line 1113, in _standardize_weights
exception_prefix='input')
File "/home/wuxinyu/pyEnv/lib/python3.5/site-packages/tensorflow/python/keras/engine/training_utils.py", line 325, in standardize_input_data
'with shape ' + str(data_shape))
ValueError: Error when checking input: expected input_1 to have 2 dimensions, but got array with shape (32,)
根据tf.keras指南,我应该能够直接将数据集传递给model.fit,如下例所示:
Input tf.data datasets
使用数据集API可扩展到大型数据集或多设备培训。将tf.data.Dataset实例传递给fit方法:
# Instantiates a toy dataset instance:
dataset = tf.data.Dataset.from_tensor_slices((data, labels))
dataset = dataset.batch(32)
dataset = dataset.repeat()
Don't forget to specify
steps_per_epoch
when callingfit
on a dataset.model.fit(dataset,epochs = 10,steps_per_epoch = 30)这里,fit方法使用steps_per_epoch参数 - 这是模型在移动到下一个纪元之前运行的训练步数。由于数据集生成批量数据,因此此代码段不需要batch_size。
数据集也可用于验证:
dataset = tf.data.Dataset.from_tensor_slices((data, labels))
dataset = dataset.batch(32).repeat()
val_dataset = tf.data.Dataset.from_tensor_slices((val_data, val_labels))
val_dataset = val_dataset.batch(32).repeat()
model.fit(dataset, epochs=10, steps_per_epoch=30,
validation_data=val_dataset,
validation_steps=3)
我的代码有什么问题,以及正确的方法是什么?
关于你为什么会收到错误的原始问题:
Error when checking input: expected input_1 to have 2 dimensions, but got array with shape (32,)
您的代码中断的原因是因为您没有将.batch()
应用回dataset
变量,如下所示:
dataset = dataset.batch(10)
你只需要打电话给dataset.batch()
。
这打破了因为没有batch()
输出张量没有批处理,即你得到形状(32,)
而不是(1,32)
。
您缺少定义迭代器,这就是出现错误的原因。
data = np.random.random((1000,32))
labels = np.random.random((1000,10))
dataset = tf.data.Dataset.from_tensor_slices((data,labels))
dataset = dataset.batch(10).repeat()
inputs = Input(shape=(32,)) # Returns a placeholder tensor
# A layer instance is callable on a tensor, and returns a tensor.
x = Dense(64, activation='relu')(inputs)
x = Dense(64, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x)
# Instantiate the model given inputs and outputs.
model = keras.Model(inputs=inputs, outputs=predictions)
# The compile step specifies the training configuration.
model.compile(optimizer=tf.train.RMSPropOptimizer(0.001),
loss='categorical_crossentropy',
metrics=['accuracy'])
# Trains for 5 epochs
model.fit(dataset.make_one_shot_iterator(), epochs=5, steps_per_epoch=100)
大纪元1/5 100/100 [==============================] - 1s 8ms /步 - 损失:11.5787 - acc :0.1010
Epoch 2/5 100/100 [==============================] - 0s 4ms /步 - 损失:11.4846 - acc :0.0990
Epoch 3/5 100/100 [==============================] - 0s 4ms /步 - 损失:11.4690 - acc :0.1270
Epoch 4/5 100/100 [==============================] - 0s 4ms /步 - 损失:11.4611 - acc :0.1300
Epoch 5/5 100/100 [==============================] - 0s 4ms /步 - 损失:11.4546 - acc :0.1360
这是我系统的结果。