github repository of fast.ai(因为代码提升了构建在PyTorch之上的库)
请滚动讨论一下
我正在运行以下代码,并在尝试将数据传递给predict_array函数时出错
当我尝试使用它直接在单个图像上进行预测时代码失败但是当相同的图像在test
文件夹中时它运行完美
from fastai.conv_learner import *
from planet import f2
PATH = 'data/shopstyle/'
metrics=[f2]
f_model = resnet34
def get_data(sz):
tfms = tfms_from_model(f_model, sz, aug_tfms=transforms_side_on, max_zoom=1.05)
return ImageClassifierData.from_csv(PATH, 'train', label_csv, tfms=tfms, suffix='.jpg', val_idxs=val_idxs, test_name='test')
def print_list(list_or_iterator):
return "[" + ", ".join( str(x) for x in list_or_iterator) + "]"
label_csv = f'{PATH}prod_train.csv'
n = len(list(open(label_csv)))-1
val_idxs = get_cv_idxs(n)
sz = 64
data = get_data(sz)
print("Loading model...")
learn = ConvLearner.pretrained(f_model, data, metrics=metrics)
learn.load(f'{sz}')
#learn.load("tmp")
print("Predicting...")
learn.precompute=False
trn_tfms, val_tfrms = tfms_from_model(f_model, sz)
#im = val_tfrms(open_image(f'{PATH}valid/4500132.jpg'))
im = val_tfrms(np.array(PIL.Image.open(f'{PATH}valid/4500132.jpg')))
preds = learn.predict_array(im[None])
p=list(zip(data.classes, preds))
print("predictions = " + print_list(p))
这是我正在获取的回溯
Traceback (most recent call last):
File "predict.py", line 34, in <module>
preds = learn.predict_array(im[None])
File "/home/ubuntu/fastai/courses/dl1/fastai/learner.py", line 266, in predict_array
def predict_array(self, arr): return to_np(self.model(V(T(arr).cuda())))
File "/home/ubuntu/src/anaconda3/envs/fastai/lib/python3.6/site-packages/torch/nn/modules/module.py", line 325, in __call__
result = self.forward(*input, **kwargs)
File "/home/ubuntu/src/anaconda3/envs/fastai/lib/python3.6/site-packages/torch/nn/modules/container.py", line 67, in forward
input = module(input)
File "/home/ubuntu/src/anaconda3/envs/fastai/lib/python3.6/site-packages/torch/nn/modules/module.py", line 325, in __call__
result = self.forward(*input, **kwargs)
File "/home/ubuntu/src/anaconda3/envs/fastai/lib/python3.6/site-packages/torch/nn/modules/batchnorm.py", line 37, in forward
self.training, self.momentum, self.eps)
File "/home/ubuntu/src/anaconda3/envs/fastai/lib/python3.6/site-packages/torch/nn/functional.py", line 1011, in batch_norm
raise ValueError('Expected more than 1 value per channel when training, got input size {}'.format(size))
ValueError: Expected more than 1 value per channel when training, got input size [1, 1024]
我试过的事情
np.expand_dims(IMG,axis=0) or image = image[..., np.newaxis]
img = cv2.imread(img_path)
img = cv2.resize(img, dsize = (200,200))
img = np.einsum('ijk->kij', img)
img = np.expand_dims(img, axis =0)
img = torch.from_numpy(img)
learn.model(Variable(img.float()).cuda())
BTW错误仍然存在
ValueError: Expected more than 1 value per channel when training, got input size [1, 1024]
在Google搜索中也找不到任何参考..
如果我们使用特征明确的批量标准化,它将在批量1的批次上失败。
正如批量标准化计算:
y = (x - mean(x)) / (std(x) + eps)
如果我们每批有一个样本,那么mean(x) = x
,输出将完全为零(忽略偏差)。我们不能用它来学习......
要使用训练有素的模型,请调用model.eval()以禁用进一步的训练。这会阻止BatchNorm图层更新其均值和方差,并允许仅输入一个样本。如果需要,使用model.train()恢复训练模式。