目标:
我有一架无人机,它必须在 3 米距离内检测和解码所有条形码和 QR 码(小或大)。尽管我已经能够在手持式相机上实现相同的效果,但在无人机上却无法实现同样的效果,因为很难保持无人机不动而不移动。
研究完成:
我上网冲浪,找到了 pyimagesearch 的程序,它在检测到的条形码上绘制边界框。该程序由两个文件组成,即,
1.simple_barcode_detection.py: 处理接收到的帧并返回条形码的边界框位置。
2.detect_barcode.py:将输入帧发送到simple_barcode_detection.py并显示返回的帧。注意:(该程序成功在条形码上绘制了边界框)。
我附上了我由此构建的代码的当前状态。
简单_条形码_检测.py:
# import the necessary packages
import numpy as np
import cv2
import imutils
from pyzbar import pyzbar
import imutils
global text, box
def detect(image):
# convert the image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# compute the Scharr gradient magnitude representation of the images
# in both the x and y direction using OpenCV 2.4
ddepth = cv2.cv.CV_32F if imutils.is_cv2() else cv2.CV_32F
gradX = cv2.Sobel(gray, ddepth=ddepth, dx=1, dy=0, ksize=-1)
gradY = cv2.Sobel(gray, ddepth=ddepth, dx=0, dy=1, ksize=-1)
# subtract the y-gradient from the x-gradient
gradient = cv2.subtract(gradX, gradY)
gradient = cv2.convertScaleAbs(gradient)
# blur and threshold the image
blurred = cv2.blur(gradient, (9, 9))
(_, thresh) = cv2.threshold(blurred, 225, 255, cv2.THRESH_BINARY)
# construct a closing kernel and apply it to the thresholded image
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (21, 7))
closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
# perform a series of erosions and dilations
closed = cv2.erode(closed, None, iterations=4)
closed = cv2.dilate(closed, None, iterations=4)
# find the contours in the thresholded image
cnts = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
# if no contours were found, return None
if len(cnts) == 0:
return None
# otherwise, sort the contours by area and compute the rotated
# bounding box of the largest contour
c = sorted(cnts, key=cv2.contourArea, reverse=True)[0]
rect = cv2.minAreaRect(c)
box = cv2.cv.BoxPoints(rect) if imutils.is_cv2() else cv2.boxPoints(rect)
box = np.int0(box)
return box
# draw a bounding box arounded the detected barcode and display the frame
def process(image,box):
min_y = int(np.min(box[:,-1]))
max_y = int(np.max(box[:,-1]))
min_x = int(np.min(box[:,0]))
max_x = int(np.max(box[:,0]))
image = image[min_y:max_y, min_x:max_x]
barcodes = pyzbar.decode(image)
# Processing the barcode #
for barcode in barcodes:
(x, y, w, h) = barcode.rect
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), 2)
barcodeData = barcode.data.decode("utf-8")
barcodeType = barcode.type
text = "{} ({})".format(barcodeData, barcodeType)
return text
检测条形码.py
# import the necessary packages
import simple_barcode_detection
from imutils.video import VideoStream
import argparse
import time
import cv2
from pyzbar import pyzbar
import imutils
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video",
help="path to the (optional) video file")
args = vars(ap.parse_args())
# if the video path was not supplied, grab the reference to the
# camera
if not args.get("video", False):
vs = VideoStream(src=0).start()
time.sleep(2.0)
# otherwise, load the video
else:
vs = cv2.VideoCapture(args["video"])
# keep looping over the frames
while True:
frame = vs.read()
frame = frame[1] if args.get("video", False) else frame
if frame is None:
break
box = simple_barcode_detection.detect(frame)
if box is not None:
cv2.putText(frame, text, (x, y - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
cv2.imshow("Frame", frame)
# cv2.imshow("Frame", image)
key = cv2.waitKey(1) & 0xFF
# if the 'q' key is pressed, stop the loop
if key == ord("q"):
break
# if we are not using a video file, stop the video file stream
if not args.get("video", False):
vs.stop()
# otherwise, release the camera pointer
else:
vs.release()
# close all windows
cv2.destroyAllWindows()
错误:
line 30, in <module> cv2.putText(frame, text, (x, y - 10), NameError: name 'text' is not defined
除此之外,我还发现了一篇研究论文,其中使用 yolo 和 pyzbar 来识别和解码条形码。
问题:
我们是否有可能接受返回的边界框位置并将它们发送到 pyzbar,以便它扫描该区域的条形码?
pyzbar 是如何工作的&我们可以创建一个类似 pyzbar 的库吗?
参考图片:
友情链接:
我也面临同样的问题,请帮助我