如何将Opencv集成到Tkinter窗口中

问题描述 投票:0回答:1

我正在尝试将使用opencv的人脸识别代码放在tkinter窗口的左侧。通过这样做,我希望使窗口的右侧自由,以便我可以输出文本。例如当检测到人脸时,程序将显示“名称:存在”,这对Tkinter和OpenCV都是陌生的,我似乎无法在网上找到直接的答案。任何帮助表示赞赏,谢谢!

下面是我的代码:

import face_recognition
import cv2
import numpy as np
import tkinter
from tkinter import *
import PySimpleGUI as sg
import xlsxwriter
import os
from PIL import ImageTk,Image
from datetime import datetime;
import datetime


#Defines time
now = datetime.datetime.now().time()

#Setup for period segment of spreadsheetname
if now.hour<9:
    name = "HomeRoom "
elif now.hour==9 and now.min<=50:
    name = "Period1 "
elif now.hour==10 and now.min<=40:
    name = "Period2 "
elif now.hour==11 and now.min<=50:
    name = "Period3 "
elif now.hour==12 and now.min<=40:
    name = "Period4 "
elif now.hour==14 and now.min<=10:
    name = "Period5 "
elif now.hour<=15:
    name = "Period6 "
else:
    name = "Testing "



# Webcam #0 (the default one)
video_capture = cv2.VideoCapture(0)

# to break loop
Printed = False

#Defines todays date                               #day/month/year-HourAM/PM
todays_date = str(datetime.datetime.now().strftime("%d-%m-%Y %I%p"))


#Sets up spreadsheet
workbook = xlsxwriter.Workbook(name + todays_date +'.xlsx')
worksheet = workbook.add_worksheet()
worksheet.write('A1', 'Name')
worksheet.write('B1', 'Attendance')
worksheet.write('A6', 'Jordan Terzian')
worksheet.write('B6', 'Absent')
worksheet.write('A5', 'Daniel Pearce')
worksheet.write('B5', 'Absent')
worksheet.write('A4', 'Ewan Krall')
worksheet.write('B4', 'Absent')
worksheet.write('A3', 'Norman Brosow')
worksheet.write('B3', 'Absent')
worksheet.write('A2', 'Mitchell Benson')
worksheet.write('B2', 'Absent')

# classmates

jordan_image = face_recognition.load_image_file("jordan.jpg")
jordan_face_encoding = face_recognition.face_encodings(jordan_image)[0]

daniel_image = face_recognition.load_image_file("daniel.jpg")
daniel_face_encoding = face_recognition.face_encodings(daniel_image)[0]

ewan_image = face_recognition.load_image_file("ewan.jpg")
ewan_face_encoding = face_recognition.face_encodings(ewan_image)[0]

norman_image = face_recognition.load_image_file("norman.jpg")
norman_face_encoding = face_recognition.face_encodings(norman_image)[0]

mitch_image = face_recognition.load_image_file("mitch.jpg")
mitch_face_encoding = face_recognition.face_encodings(mitch_image)[0]



# Create arrays of known face encodings and their names
known_face_encodings = [
    jordan_face_encoding,
    daniel_face_encoding,
    ewan_face_encoding,
    norman_face_encoding,
    mitch_face_encoding,

]
known_face_names = [
    "Jordan Terzian",
    "Daniel Pearce",
    "Ewan Krall",
    "Norman Brosow",
    "Mitchell Benson",

]



# Initialize variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True

while True:
    # Grab a single frame of video
    ret, frame = video_capture.read()

    # Resize frame of video to 1/4 size for faster face recognition processing
    small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

    # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
    rgb_small_frame = small_frame[:, :, ::-1]


    # Only process every other frame of video to save time
    if process_this_frame:
        # Find all the faces and face encodings in the current frame of video
        face_locations = face_recognition.face_locations(rgb_small_frame)
        face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)

        face_names = []
        for face_encoding in face_encodings:
            # See if the face is a match for the known face(s)
            matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
            name = "Unknown"

            # use the known face with the smallest distance to the new face
            face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
            best_match_index = np.argmin(face_distances)
            if matches[best_match_index]:
                name = known_face_names[best_match_index]

            face_names.append(name)

    process_this_frame = not process_this_frame


    # Display the results
    for (top, right, bottom, left), name in zip(face_locations, face_names):
        # Scale back up face locations since the frame we detected in was scaled to 1/4 size
        top *= 4
        right *= 4
        bottom *= 4
        left *= 4

        # Draw a box around the face
        cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)

        # Draw a label with a name below the face,
        cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
        font = cv2.FONT_HERSHEY_DUPLEX
        cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
        #Writes to spreadsheet and GUI
        if name == "Jordan Terzian" and not Printed:
            print("Jordan Terzian is Present")
            Printed = True
            worksheet.write('B6', 'Present')
        elif name == "Daniel Pearce" and not Printed:
            print("Daniel Pearce is Present")
            Printed = True
            worksheet.write('B5', 'Present')
        elif name == "Ewan Krall" and not Printed:
            print("Ewan Krall is Present")
            Printed = True
            worksheet.write('B4', 'Present')
        elif name == "Norman Brosow" and not Printed:
            print("Norman Brosow is Present")
            Printed = True
            worksheet.write('B3', 'Present')
        elif name == "Mitchell Benson" and not Printed:
            print("Michell Benson is Present")
            Printed = True
            worskheet.write('B2', 'Present')

    # Display the resulting image
    cv2.imshow('Video', frame)

    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# Release handle to the webcam, Closes webcam
video_capture.release()
cv2.destroyAllWindows()
workbook.close()
python python-3.x opencv tkinter face-recognition
1个回答
0
投票
import tkinter as tk from PIL import Image, ImageTk import cv2 # --- functions --- def update_frame(): ret, frame = cap.read() image = Image.fromarray(frame) photo.paste(image) #description['text'] = 'new text' root.after(10, update_frame) # run it again after 10ms # --- main --- cap = cv2.VideoCapture(0) # get first frame ret, frame = cap.read() # - GUI - root = tk.Tk() image = Image.fromarray(frame) photo = ImageTk.PhotoImage(image) canvas = tk.Canvas(root, width=photo.width(), height=photo.height()) canvas.pack(side='left', fill='both', expand=True) canvas.create_image((0,0), image=photo, anchor='nw') description = tk.Label(root, text="Place for description") description.pack(side='right') # - start - update_frame() # run it first time root.mainloop() # - after close - cap.release()


BTW:在GitHub上,我有一个带有按钮PlayStopSave Imagepython-examples/cv2/tkinter-CV]的示例
© www.soinside.com 2019 - 2024. All rights reserved.