我正在尝试创建一个带有时间滑块的分区统计图来选择日期。我现在还想添加一个下拉菜单来选择要显示数据的数据集。这是一个最小的例子:
import plotly.graph_objects as go
import pandas as pd
data_2019 = pd.DataFrame({
'year': 2019,
'region': ['Germany', 'Denmark', 'Japan', 'France', 'Italy', 'Spain', 'Canada', 'Brazil', 'India', 'Australia',
'China', 'Russia', 'South Korea', 'Netherlands', 'Sweden', 'Norway', 'Finland', 'Mexico',
'Argentina', 'Chile',
'Germany', 'Denmark', 'Japan', 'France', 'Italy', 'Spain', 'Canada', 'Brazil', 'India', 'Australia'],
'date': ['01-01', '01-01', '01-01', '02-01', '02-01', '02-01', '03-01', '03-01', '03-01', '04-01',
'04-01', '04-01', '05-01', '05-01', '05-01', '06-01', '06-01', '06-01', '07-01', '07-01',
'08-01', '08-01', '08-01', '09-01', '09-01', '09-01', '10-01', '10-01', '10-01', '11-01'],
'valence': [0.3, 0.25, 0.22, 0.21, 0.18, 0.15, 0.1, 0.12, 0.14, 0.15,
0.17, 0.19, 0.21, 0.23, 0.25, 0.27, 0.29, 0.31, 0.33, 0.35,
0.37, 0.39, 0.41, 0.43, 0.45, 0.47, 0.49, 0.51, 0.53, 0.55]
})
data_2020 = pd.DataFrame({
'year': 2020,
'region': ['Germany', 'Denmark', 'Japan', 'France', 'Italy', 'Spain', 'Canada', 'Brazil', 'India', 'Australia',
'China', 'Russia', 'South Korea', 'Netherlands', 'Sweden', 'Norway', 'Finland', 'Mexico',
'Argentina', 'Chile',
'Germany', 'Denmark', 'Japan', 'France', 'Italy', 'Spain', 'Canada', 'Brazil', 'India', 'Australia'],
'date': ['01-01', '01-01', '01-01', '02-01', '02-01', '02-01', '03-01', '03-01', '03-01', '04-01',
'04-01', '04-01', '05-01', '05-01', '05-01', '06-01', '06-01', '06-01', '07-01', '07-01',
'08-01', '08-01', '08-01', '09-01', '09-01', '09-01', '10-01', '10-01', '10-01', '11-01'],
'valence': [0.94, 0.89, 0.85, 0.71, 0.67, 0.63, 0.81, 0.79, 0.77, 0.65,
0.62, 0.61, 0.75, 0.72, 0.69, 0.85, 0.82, 0.79, 0.75, 0.72,
0.91, 0.88, 0.84, 0.81, 0.78, 0.74, 0.9, 0.87, 0.83, 0.8]
})
def create_choropleth(data, year):
fig = go.Figure()
for date in data['date'].unique():
df = data[data['date'] == date]
fig.add_trace(go.Choropleth(
locations=df['region'],
z=df['valence'],
locationmode='country names',
colorscale='Viridis',
colorbar_title='Valence',
visible=False
))
steps = []
for i, date in enumerate(data['date'].unique()):
step = dict(
method='update',
args=[{'visible': [False] * len(fig.data)}],
label=date
)
step['args'][0]['visible'][i] = True
steps.append(step)
sliders = [dict(
active=0,
pad={"t": 50},
steps=steps
)]
fig.update_layout(
sliders=sliders,
updatemenus=[
dict(
buttons=[
dict(label='2019',
method='update',
args=[{'visible': [i < len(data_2019['date'].unique()) for i in range(len(fig.data))]}]),
dict(label='2020',
method='update',
args=[{'visible': [i >= len(data_2019['date'].unique()) for i in range(len(fig.data))]}])
],
direction="down",
pad={"r": 10, "t": 10},
showactive=True,
),
]
)
return fig
fig = create_choropleth(data_2019, 2019)
fig_2020 = create_choropleth(data_2020, 2020)
for trace in fig_2020.data:
fig.add_trace(trace)
fig.show()
但是,数据选择不起作用:它要么始终显示 2020 年的数据,要么将两者混合在一起。 如何确保如果选择 2019 年,则相应数据仅显示 2019 年的数据,如果选择 2020 年,则仅显示 2020 年的数据?
试试这个:
import plotly.graph_objects as go
import pandas as pd
data_2019 = pd.DataFrame({
'year': 2019,
'region': ['Germany', 'Denmark', 'Japan', 'France', 'Italy', 'Spain', 'Canada', 'Brazil', 'India', 'Australia',
'China', 'Russia', 'South Korea', 'Netherlands', 'Sweden', 'Norway', 'Finland', 'Mexico',
'Argentina', 'Chile',
'Germany', 'Denmark', 'Japan', 'France', 'Italy', 'Spain', 'Canada', 'Brazil', 'India', 'Australia'],
'date': ['01-01', '01-01', '01-01', '02-01', '02-01', '02-01', '03-01', '03-01', '03-01', '04-01',
'04-01', '04-01', '05-01', '05-01', '05-01', '06-01', '06-01', '06-01', '07-01', '07-01',
'08-01', '08-01', '08-01', '09-01', '09-01', '09-01', '10-01', '10-01', '10-01', '11-01'],
'valence': [0.3, 0.25, 0.22, 0.21, 0.18, 0.15, 0.1, 0.12, 0.14, 0.15,
0.17, 0.19, 0.21, 0.23, 0.25, 0.27, 0.29, 0.31, 0.33, 0.35,
0.37, 0.39, 0.41, 0.43, 0.45, 0.47, 0.49, 0.51, 0.53, 0.55]
})
data_2020 = pd.DataFrame({
'year': 2020,
'region': ['Germany', 'Denmark', 'Japan', 'France', 'Italy', 'Spain', 'Canada', 'Brazil', 'India', 'Australia',
'China', 'Russia', 'South Korea', 'Netherlands', 'Sweden', 'Norway', 'Finland', 'Mexico',
'Argentina', 'Chile',
'Germany', 'Denmark', 'Japan', 'France', 'Italy', 'Spain', 'Canada', 'Brazil', 'India', 'Australia'],
'date': ['01-01', '01-01', '01-01', '02-01', '02-01', '02-01', '03-01', '03-01', '03-01', '04-01',
'04-01', '04-01', '05-01', '05-01', '05-01', '06-01', '06-01', '06-01', '07-01', '07-01',
'08-01', '08-01', '08-01', '09-01', '09-01', '09-01', '10-01', '10-01', '10-01', '11-01'],
'valence': [0.94, 0.89, 0.85, 0.71, 0.67, 0.63, 0.81, 0.79, 0.77, 0.65,
0.62, 0.61, 0.75, 0.72, 0.69, 0.85, 0.82, 0.79, 0.75, 0.72,
0.91, 0.88, 0.84, 0.81, 0.78, 0.74, 0.9, 0.87, 0.83, 0.8]
})
def create_choropleth(data_2019, data_2020):
fig = go.Figure()
# Add traces for 2019
for date in data_2019['date'].unique():
df = data_2019[data_2019['date'] == date]
fig.add_trace(go.Choropleth(
locations=df['region'],
z=df['valence'],
locationmode='country names',
colorscale='Viridis',
colorbar_title='Valence',
visible=False,
name=f'2019 {date}'
))
# Add traces for 2020
for date in data_2020['date'].unique():
df = data_2020[data_2020['date'] == date]
fig.add_trace(go.Choropleth(
locations=df['region'],
z=df['valence'],
locationmode='country names',
colorscale='Viridis',
colorbar_title='Valence',
visible=False,
name=f'2020 {date}'
))
steps = []
for i, date in enumerate(data_2019['date'].unique()):
step = dict(
method='update',
args=[{'visible': [False] * len(fig.data)}],
label=date
)
step['args'][0]['visible'][i] = True # Show 2019 date
step['args'][0]['visible'][i + len(data_2019['date'].unique())] = True # Show 2020 date
steps.append(step)
sliders = [dict(
active=0,
pad={"t": 50},
steps=steps
)]
updatemenus = [
dict(
buttons=[
dict(label='2019',
method='update',
args=[{'visible': [i < len(data_2019['date'].unique()) for i in range(len(fig.data))]}]),
dict(label='2020',
method='update',
args=[{'visible': [i >= len(data_2019['date'].unique()) for i in range(len(fig.data))]}])
],
direction="down",
pad={"r": 10, "t": 10},
showactive=True,
x=0.1,
xanchor="left",
y=1.1,
yanchor="top"
),
]
fig.update_layout(
sliders=sliders,
updatemenus=updatemenus,
title_text='Valence by Country and Date',
geo=dict(
showframe=False,
showcoastlines=True,
projection_type='equirectangular'
)
)
fig.data[0].visible = True
return fig
fig = create_choropleth(data_2019, data_2020)
fig.show()