Tensorflow 2.0-tf.estimator.DNNClassifier对大型数据集的训练

问题描述 投票:2回答:2

我正在尝试训练DNNClassifier

    labels = ['BENIGN', 'Syn', 'UDPLag', 'UDP', 'LDAP', 'MSSQL', 'NetBIOS', 'WebDDoS']

    # Build a DNN
    classifier = tf.estimator.DNNClassifier(
    feature_columns=feature_columns,
    hidden_units=[30, 10],
    n_classes=len(labels),
    label_vocabulary=labels)

    def input_fn(features, labels, training=True, batch_size=32):
       '''
       An input function for training or evaluating
       '''
       # Convert the inputs to a Dataset.
       dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))
       # Shuffle and repeat if you are in training mode.
       if training:
          dataset = dataset.shuffle(1000).repeat()
       return dataset.batch(batch_size)

    # Train the model
    classifier.train(
    input_fn=lambda: input_fn(train_features, train_label, training=True),
    steps=5000)

在使用更大的数据集之前,训练工作正常

train_features.shape
>>> (15891114, 20)
train_label.shape
>>> (15891114,)

培训开始后,我正在使用Google Colaboratory,并且由于超出RAM使用量(12GB RAM),我的会话崩溃

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python

/ops/resource_variable_ops.py:1666: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.
Instructions for updating:
If using Keras pass *_constraint arguments to layers.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
INFO:tensorflow:Calling model_fn.
WARNING:tensorflow:Layer dnn is casting an input tensor from dtype float64 to the layer's dtype of float32, which is new behavior in TensorFlow 2.  The layer has dtype float32 because it's dtype defaults to floatx.

If you intended to run this layer in float32, you can safely ignore this warning. If in doubt, this warning is likely only an issue if you are porting a TensorFlow 1.X model to TensorFlow 2.

To change all layers to have dtype float64 by default, call `tf.keras.backend.set_floatx('float64')`. To change just this layer, pass dtype='float64' to the layer constructor. If you are the author of this layer, you can disable autocasting by passing autocast=False to the base Layer constructor.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/optimizer_v2/adagrad.py:106: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.

训练开始前仅使用了1GB的RAM,但是训练开始后RAM迅速饱和。

tensorflow google-colaboratory tensorflow2.0 tensorflow-datasets tensorflow-estimator
2个回答
0
投票

我复制了您的Google Colab,并将数据文件复制到了我的云端硬盘中,并训练了估算器,您的代码才有效::s enter image description here。我可以训练DNN没问题:

我检查了自己是否在使用大型数据集:enter image description here

[当我重新计算一些jupyter笔记本单元时,我确实收到了out of RAM消息,但是当我重新启动内核后再执行Run all cells时,却没有。也许问题出在Jupyter?尝试将代码写入.py文件(放置在驱动器中),然后使用subprocess从colab笔记本中运行它,也许可以解决您的问题。


0
投票

[通过提供数据框的chunks来训练/评估模型,从而使其发挥作用。

仍然,当我提供用于训练或评估Estimator的整个数据帧时,我不清楚RA​​M为什么会饱和。

© www.soinside.com 2019 - 2024. All rights reserved.