我正在尝试将 PyTorch FOMM 模型转换为 TorchScript。一旦我开始用
@torch.jit.script
注释一些类,我就得到了一个错误:
OSError: Can't get source for <class 'collections.deque'>. TorchScript requires source access in order to carry out compilation, make sure original .py files are available.
据我所知,在 CPython 中实现的类因此不能被 TorchScript 编译器读取。我没有找到任何纯 Python 实现。我怎样才能克服这个问题?
这是我要注释的课程:
import queue
import collections
import threading
import torch
@torch.jit.script
class SyncMaster(object):
"""An abstract `SyncMaster` object.
- During the replication, as the data parallel will trigger an callback of each module, all slave devices should
call `register(id)` and obtain an `SlavePipe` to communicate with the master.
- During the forward pass, master device invokes `run_master`, all messages from slave devices will be collected,
and passed to a registered callback.
- After receiving the messages, the master device should gather the information and determine to message passed
back to each slave devices.
"""
def __init__(self, master_callback):
"""
Args:
master_callback: a callback to be invoked after having collected messages from slave devices.
"""
self._master_callback = master_callback
self._queue = queue.Queue()
self._registry = collections.OrderedDict()
self._activated = False
def __getstate__(self):
return {'master_callback': self._master_callback}
def __setstate__(self, state):
self.__init__(state['master_callback'])
def register_slave(self, identifier):
"""
Register an slave device.
Args:
identifier: an identifier, usually is the device id.
Returns: a `SlavePipe` object which can be used to communicate with the master device.
"""
if self._activated:
assert self._queue.empty(), 'Queue is not clean before next initialization.'
self._activated = False
self._registry.clear()
future = FutureResult()
self._registry[identifier] = _MasterRegistry(future)
return SlavePipe(identifier, self._queue, future)
def run_master(self, master_msg):
"""
Main entry for the master device in each forward pass.
The messages were first collected from each devices (including the master device), and then
an callback will be invoked to compute the message to be sent back to each devices
(including the master device).
Args:
master_msg: the message that the master want to send to itself. This will be placed as the first
message when calling `master_callback`. For detailed usage, see `_SynchronizedBatchNorm` for an example.
Returns: the message to be sent back to the master device.
"""
self._activated = True
intermediates = [(0, master_msg)]
for i in range(self.nr_slaves):
intermediates.append(self._queue.get())
results = self._master_callback(intermediates)
assert results[0][0] == 0, 'The first result should belongs to the master.'
for i, res in results:
if i == 0:
continue
self._registry[i].result.put(res)
for i in range(self.nr_slaves):
assert self._queue.get() is True
return results[0][1]
@property
def nr_slaves(self):
return len(self._registry)
将 TorchScript 生成方法从
torch.jit.script
切换到 torch.jit.trace
并且它有效,不需要注释任何东西。或者torch.onnx.export
有时工作。
我在尝试在使用 torch 的 Python 脚本上使用 PyInstaller 时遇到了这个问题。我按照这个Github线程中的步骤3将标签更改为
@torch.jit._script_if_tracing
在modeling_deberta.py
中。
(请注意,在 Github 的回答中,git clone
中有一个错字,其中说的是“变形金刚”而不是“变形金刚”,并且文件路径略有不同:src/transformers/models/deberta/modeling_deberta.py
。我也在modeling_deberta_v2.py
中做到了为了安全。)