我有一个名为 resultados 的对象,一个列表,它是 cch 函数的结果。用于设置一个循环运行的模型,以迭代生物标记列表(111 个元素)。我想获取每个元素的摘要中显示的表格。如果您按 resultados$hsalet7a5p$coefficients 计算,此表会有所不同
resultados <- list()
# Iterate in variables where i are the 111 biomarkers
for (i in columnas) {
# age, sex, HDL-C levels, diabetes, hypercholesterolaemia, triglyceride levels, hypertension, smoking habit, body mass index, and leisure-time physical activity.
# Construir dinámicamente la fórmula
formula <- as.formula(paste("Surv(tocoro, iam) ~ edat + sexe + hdldir + diabetis + fuma + box + pes + trigli + col + ", i))
# Analysis
resultado <- cch(formula, data = dat, subcoh = ~ casecohort2, id = ~parti, cohort.size = 5404, method = "LinYing", robust = TRUE)
# Almacenar el resultado en la lista
resultados[[i]] <- resultado
}
> class(resultados$hsalet7a5p)
[1] "cch"
> summary(resultados$hsalet7a5p)
Case-cohort analysis,x$method, LinYing
with subcohort of 195 from cohort of 5404
Call: cch(formula = formula, data = dat, subcoh = ~casecohort2, id = ~parti,
cohort.size = 5404, method = "LinYing", robust = TRUE)
Coefficients:
Coef HR (95% CI) p
edat 0.050 1.052 1.010 1.095 0.015
sexe2 -1.753 0.173 0.060 0.502 0.001
hdldir -0.019 0.981 0.941 1.024 0.381
diabetis 0.357 1.429 0.495 4.124 0.510
fuma -0.310 0.733 0.556 0.967 0.028
box5 4.314 74.727 30.717 181.790 0.000
pes -0.021 0.979 0.947 1.012 0.218
trigli 0.001 1.001 0.994 1.009 0.740
col 0.011 1.011 1.001 1.022 0.034
hsalet7a5p 0.198 1.219 1.003 1.482 0.047
提前致谢
循环列表并使用
broom::tidy
:
# data from cch help page
res <- list(fit1 = cch(Surv(edrel, rel) ~ stage + histol + age, data =ccoh.data,
subcoh = ~subcohort, id=~seqno, cohort.size=4028),
fit2 = cch(Surv(edrel, rel) ~ stage, data =ccoh.data,
subcoh = ~subcohort, id=~seqno, cohort.size=4028))
lapply(res, function(i) broom::tidy(i))
# $fit1
# # A tibble: 5 × 7
# term estimate std.error statistic p.value conf.low conf.high
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 stageII 0.735 0.168 4.36 1.30e- 5 0.404 1.06
# 2 stageIII 0.597 0.173 3.44 5.77e- 4 0.257 0.937
# 3 stageIV 1.38 0.205 6.76 1.40e-11 0.983 1.79
# 4 histolUH 1.50 0.160 9.38 0 1.19 1.81
# 5 age 0.0433 0.0237 1.82 6.83e- 2 -0.00324 0.0898
#
# $fit2
# # A tibble: 3 × 7
# term estimate std.error statistic p.value conf.low conf.high
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 stageII 0.851 0.152 5.59 2.28e- 8 0.553 1.15
# 2 stageIII 0.938 0.152 6.19 6.20e-10 0.641 1.24
# 3 stageIV 1.42 0.185 7.69 1.49e-14 1.06 1.79