我在我的二进制图像上使用了
Projection Profile
方法来获取歪斜校正版本。一切都很好,但旋转后的图像具有已应用倾斜校正的黑色区域。 如何将该区域转换为白色而不是黑色。以下是投影轮廓的代码。
def correct_skew(image, delta=1, limit=5):
"""
image : input
delta : sampling in the -limit,limit + delta range
limit : range of angles to explore
"""
# Function that returns the score of histogram for the given angle at which we check
def determine_score(arr, angle):
"""
arr : binarized image
angle : angle at which we calcuate the score
"""
data = inter.rotate(arr, angle, reshape=False, order=0)
histogram = np.sum(data, axis=1)
score = np.sum((histogram[1:] - histogram[:-1]) ** 2)
return histogram, score
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
scores = []
angles = np.arange(-limit, limit + delta, delta)
for angle in angles:
histogram, score = determine_score(thresh, angle)
scores.append(score)
best_angle = angles[scores.index(max(scores))]
(h, w) = image.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, best_angle, 1.0)
rotated = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC)
return best_angle, rotated
这是倾斜校正后的图像:
cv2.warpaffine 文档指出该函数采用可选参数,即
borderValue
。默认情况下,该值为 (0, 0, 0)
,您可以通过调用 Warpaffine 例程来更改此值:
rotated = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC, borderMode = cv2.BORDER_CONSTANT, borderValue=np.array([255, 255, 255]))
我用来获得白色背景而不是黑色背景的一个解决方法是在旋转之前和之后使用按位。
image = cv2.bitwise_not(image)
image = imutils.rotate_bound(image, angle=angle)
image = cv2.bitwise_not(image)