从子集创建数据框并排除数据

问题描述 投票:2回答:2

这些是我的两个数据框的head()s(我有几个但有不同的EXPANSIONs(骨头):

                        CEMETERY CONTEXT    SEX EXPANSION VALUE
613     Medieval-St. Mary Graces    7172 FEMALE    HuL1 L   285
681     Medieval-St. Mary Graces    7223   MALE    HuL1 L   310
860     Medieval-St. Mary Graces    7314   MALE    HuL1 L   357
1301    Medieval-St. Mary Graces    8102   MALE    HuL1 L   323
1441    Medieval-St. Mary Graces    8117 FEMALE    HuL1 L   316
1575    Medieval-St. Mary Graces    8207   MALE    HuL1 L   326
1655    Medieval-St. Mary Graces    8268 FEMALE    HuL1 L   292
1902    Medieval-St. Mary Graces    9362 FEMALE    HuL1 L   283
1932    Medieval-St. Mary Graces    9373   MALE    HuL1 L   316
2368    Medieval-St. Mary Graces    9813   MALE    HuL1 L   320
2947    Medieval-St. Mary Graces   10145   MALE    HuL1 L   320
3033    Medieval-St. Mary Graces   10218   MALE    HuL1 L   320
3062    Medieval-St. Mary Graces   10241   MALE    HuL1 L   341
3159    Medieval-St. Mary Graces   10420   MALE    HuL1 L   327
3294    Medieval-St. Mary Graces   11005   MALE    HuL1 L   304
3471    Medieval-St. Mary Graces   11090 FEMALE    HuL1 L   309
3723    Medieval-St. Mary Graces   11494   MALE    HuL1 L   324
4128    Medieval-St. Mary Graces   12356   MALE    HuL1 L   319
4206    Medieval-St. Mary Graces   12414   MALE    HuL1 L   323
4344    Medieval-St. Mary Graces   12493   MALE    HuL1 L   325
4421    Medieval-St. Mary Graces   12520   MALE    HuL1 L   325
4470    Medieval-St. Mary Graces   12525   MALE    HuL1 L   347
4837    Medieval-St. Mary Graces   12761   MALE    HuL1 L   322
4948    Medieval-St. Mary Graces   12785   MALE    HuL1 L   335
5072    Medieval-St. Mary Graces   13530   MALE    HuL1 L   341
5317    Medieval-St. Mary Graces   13747   MALE    HuL1 L   337
5840      Medieval-Spital Square      19 FEMALE    HuL1 L   326
5927      Medieval-Spital Square      22   MALE    HuL1 L   330
6044      Medieval-Spital Square      31   MALE    HuL1 L   328
6177      Medieval-Spital Square      95   MALE    HuL1 L   316
6336      Medieval-Spital Square     298   MALE    HuL1 L   347
6725      Medieval-Spital Square     349 FEMALE    HuL1 L   310
6827      Medieval-Spital Square     358   MALE    HuL1 L   336
6959      Medieval-Spital Square     383 FEMALE    HuL1 L   319
7105      Medieval-Spital Square     391   MALE    HuL1 L   352
7167      Medieval-Spital Square     394   MALE    HuL1 L   317
7322      Medieval-Spital Square     430   MALE    HuL1 L   318
7765 Medieval-St. Benet sherehog    1511 FEMALE    HuL1 L   296
7808 Medieval-St. Benet sherehog    1566   MALE    HuL1 L   314

                        CEMETERY CONTEXT    SEX EXPANSION VALUE
166     Medieval-St. Mary Graces    6225   MALE    HuL1 R   346
345     Medieval-St. Mary Graces    6351   MALE    HuL1 R   330
612     Medieval-St. Mary Graces    7172 FEMALE    HuL1 R   286
660     Medieval-St. Mary Graces    7202   MALE    HuL1 R   340
1214    Medieval-St. Mary Graces    8016   MALE    HuL1 R   334
1348    Medieval-St. Mary Graces    8111 FEMALE    HuL1 R   308
1440    Medieval-St. Mary Graces    8117 FEMALE    HuL1 R   320
1574    Medieval-St. Mary Graces    8207   MALE    HuL1 R   326
2205    Medieval-St. Mary Graces    9543   MALE    HuL1 R   326
2508    Medieval-St. Mary Graces    9901   MALE    HuL1 R   354
2731    Medieval-St. Mary Graces    9987   MALE    HuL1 R   324
2778    Medieval-St. Mary Graces   10058   MALE    HuL1 R   345
2832    Medieval-St. Mary Graces   10070   MALE    HuL1 R   360
3032    Medieval-St. Mary Graces   10218   MALE    HuL1 R   325
3061    Medieval-St. Mary Graces   10241   MALE    HuL1 R   341
3236    Medieval-St. Mary Graces   10801   MALE    HuL1 R   344
3470    Medieval-St. Mary Graces   11090 FEMALE    HuL1 R   312
3655    Medieval-St. Mary Graces   11475   MALE    HuL1 R   339
3722    Medieval-St. Mary Graces   11494   MALE    HuL1 R   334
4205    Medieval-St. Mary Graces   12414   MALE    HuL1 R   327
4298    Medieval-St. Mary Graces   12480   MALE    HuL1 R   318
4343    Medieval-St. Mary Graces   12493   MALE    HuL1 R   325
4420    Medieval-St. Mary Graces   12520   MALE    HuL1 R   331
4469    Medieval-St. Mary Graces   12525   MALE    HuL1 R   342
4947    Medieval-St. Mary Graces   12785   MALE    HuL1 R   338
5244    Medieval-St. Mary Graces   13678   MALE    HuL1 R   342
5288    Medieval-St. Mary Graces   13724 FEMALE    HuL1 R   319
5316    Medieval-St. Mary Graces   13747   MALE    HuL1 R   340
5374    Medieval-St. Mary Graces   13825   MALE    HuL1 R   349
5839      Medieval-Spital Square      19 FEMALE    HuL1 R   332
5926      Medieval-Spital Square      22   MALE    HuL1 R   338
6043      Medieval-Spital Square      31   MALE    HuL1 R   328
6176      Medieval-Spital Square      95   MALE    HuL1 R   316
6245      Medieval-Spital Square     269   MALE    HuL1 R   339
6288      Medieval-Spital Square     287 FEMALE    HuL1 R   282
6335      Medieval-Spital Square     298   MALE    HuL1 R   352
6410      Medieval-Spital Square     309   MALE    HuL1 R   332
6724      Medieval-Spital Square     349 FEMALE    HuL1 R   313
6826      Medieval-Spital Square     358   MALE    HuL1 R   340
6958      Medieval-Spital Square     383 FEMALE    HuL1 R   322
7104      Medieval-Spital Square     391   MALE    HuL1 R   355
7166      Medieval-Spital Square     394   MALE    HuL1 R   322
7321      Medieval-Spital Square     430   MALE    HuL1 R   325
7404      Medieval-Spital Square     472   MALE    HuL1 R   346
7502 Medieval-St. Benet sherehog      67   MALE    HuL1 R   339

我需要排除任何没有左(L)和(R)骨测量的上下文(标本)。我已经为这些数据帧制作了只有CONTEXT的子集

HuL1L.id=HuL1L$CONTEXT
HuL1R.id=HuL1R$CONTEXT

并且打算使用布尔运算符%in%来找出其中一个向量中的哪些个体也在另一个向量中

HuL1L.id%in%HuL1Rframe.id

[1]  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
[11] FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE
[21]  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
[31]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE

但我不确定除此之外该做什么 - 比如如何用这些数据实际创建数据框,如下所示:

                         CEMETERY CONTEXT    SEX EXPANSION VALUE
613     Medieval-St. Mary Graces    7172 FEMALE    HuL1 L   285
612     Medieval-St. Mary Graces    7172 FEMALE    HuL1 R   286
1441    Medieval-St. Mary Graces    8117 FEMALE    HuL1 L   316
1440    Medieval-St. Mary Graces    8117 FEMALE    HuL1 R   320
1575    Medieval-St. Mary Graces    8207   MALE    HuL1 L   326
1574    Medieval-St. Mary Graces    8207   MALE    HuL1 R   326

然后为我的其他骨骼重复此操作,最后组合所有这些数据框。

编辑:

使用:

HuL1R <- HuL1R %>% filter(CONTEXT %in% Hul1L$CONTEXT)
HuL1L <- HuL1L %>% filter(CONTEXT %in% Hul1R$CONTEXT)
Full_HuL <- bind_rows(HuL1R, HuL1L) %>% arrange(CONTEXT, EXPANSION)

仍然给我的背景只有HuL1 L或HuL1 R

                      CEMETERY CONTEXT    SEX EXPANSION VALUE
1       Medieval-Spital Square      19 FEMALE    HuL1 L   326
2       Medieval-Spital Square      19 FEMALE    HuL1 R   332
3       Medieval-Spital Square      22   MALE    HuL1 L   330
4       Medieval-Spital Square      22   MALE    HuL1 R   338
5       Medieval-Spital Square      31   MALE    HuL1 L   328
6       Medieval-Spital Square      31   MALE    HuL1 R   328
7  Medieval-St. Benet sherehog      67   MALE    HuL1 R   339
8       Medieval-Spital Square      95   MALE    HuL1 L   316
9       Medieval-Spital Square      95   MALE    HuL1 R   316
10      Medieval-Spital Square     269   MALE    HuL1 R   339
11      Medieval-Spital Square     287 FEMALE    HuL1 R   282
r dataframe boolean-operations
2个回答
0
投票

您可以决定rbind您的数据框并使用基础r中的duplicated函数

 dat3=rbind(dat1,dat2)
 dat4=dat3[duplicated(dat3$CONTEXT,fromLast = T)|duplicated(dat3$CONTEXT),]
 dat4[order(dat4$CONTEXT),]
                         CEMETERY CONTEXT    SEX EXPANSION VALUE
 1  613  Medieval-St. Mary Graces    7172 FEMALE    HuL1 L   285
 9  612  Medieval-St. Mary Graces    7172 FEMALE    HuL1 R   286
 5  1441 Medieval-St. Mary Graces    8117 FEMALE    HuL1 L   316
 13 1440 Medieval-St. Mary Graces    8117 FEMALE    HuL1 R   320
 6  1575 Medieval-St. Mary Graces    8207   MALE    HuL1 L   326
 14 1574 Medieval-St. Mary Graces    8207   MALE    HuL1 R   326

使用管道:

 rbind(dat1,dat2)%>%{.[duplicated(.[2])|duplicated(.[2],fromLast = T),]}%>%{.[order(.[2]),]}

使用的数据:

 structure(list(CEMETERY = c("613  Medieval-St. Mary Graces", 
 "681  Medieval-St. Mary Graces", "860  Medieval-St. Mary Graces", 
 "1301 Medieval-St. Mary Graces", "1441 Medieval-St. Mary Graces", 
 "1575 Medieval-St. Mary Graces"), CONTEXT = c(7172L, 7223L, 7314L, 
  8102L, 8117L, 8207L), SEX = c("FEMALE", "MALE", "MALE", "MALE", 
 "FEMALE", "MALE"), EXPANSION = c("HuL1 L", "HuL1 L", "HuL1 L", 
 "HuL1 L", "HuL1 L", "HuL1 L"), VALUE = c(285L, 310L, 357L, 323L, 
 316L, 326L)), .Names = c("CEMETERY", "CONTEXT", "SEX", "EXPANSION", 
 "VALUE"), class = "data.frame", row.names = c(NA, -6L))

 dat2=structure(list(CEMETERY = c("166  Medieval-St. Mary Graces", 
 "345  Medieval-St. Mary Graces", "612  Medieval-St. Mary Graces", 
 "660  Medieval-St. Mary Graces", "1214 Medieval-St. Mary Graces", 
 "1348 Medieval-St. Mary Graces", "1440 Medieval-St. Mary Graces", 
 "1574 Medieval-St. Mary Graces"), CONTEXT = c(6225L, 6351L, 7172L, 
 7202L, 8016L, 8111L, 8117L, 8207L), SEX = c("MALE", "MALE", "FEMALE", 
 "MALE", "MALE", "FEMALE", "FEMALE", "MALE"), EXPANSION = c("HuL1 R", 
 "HuL1 R", "HuL1 R", "HuL1 R", "HuL1 R", "HuL1 R", "HuL1 R", "HuL1 R"
 ), VALUE = c(346L, 330L, 286L, 340L, 334L, 308L, 320L, 326L)), .Names = c  ("CEMETERY", 
 "CONTEXT", "SEX", "EXPANSION", "VALUE"), class = "data.frame", row.names = c(NA, 
 -8L))

0
投票

你可以尝试的一件事是来自group_byfilterdplyr

library(dplyr)
library(tidyr)

Full <- bind_rows(HuL1L, HuL1R) %>%
    group_by(CONTEXT) %>%
    filter(any(EXPANSION == "HuL1 L"),
           any(EXPANSION == "HuL1 R")) %>%
    arrange(CONTEXT, EXPANSION) %>%
    spread(EXPANSION, VALUE)

如果你想重塑,你可以使用library(tidyr)

© www.soinside.com 2019 - 2024. All rights reserved.