如何按周聚合数据框?

问题描述 投票:0回答:4

考虑以下示例

library(tidyverse)
library(lubridate)

time <- seq(from =ymd("2014-02-24"),to= ymd("2014-03-20"), by="days")
set.seed(123)
values <- sample(seq(from = 20, to = 50, by = 5), size = length(time), replace = TRUE)
df2 <- data_frame(time, values)
df2 <- df2 %>% mutate(day_of_week = wday(time, label = TRUE))

Source: local data frame [25 x 3]

         time values day_of_week
       <date>  <dbl>      <fctr>
1  2014-02-24     30         Mon
2  2014-02-25     45        Tues
3  2014-02-26     30         Wed
4  2014-02-27     50       Thurs
5  2014-02-28     50         Fri
6  2014-03-01     20         Sat
7  2014-03-02     35         Sun
8  2014-03-03     50         Mon
9  2014-03-04     35        Tues
10 2014-03-05     35         Wed

我想按周聚合此数据框。

也就是说,假设我将一周定义为从周一早上开始到周日晚上结束,我们将其称为

Monday to Monday
周期。 (重要的是,我希望能够选择其他约定,例如周五到周五)。

然后,我只想计算每周

values
的平均值。

例如,在上面的示例中,可以计算 2 月 24 日星期一到 3 月 2 日星期日之间

values
的平均值,依此类推。

我该怎么做?

r dplyr xts lubridate
4个回答
48
投票

在整洁的宇宙中,

df2 %>% group_by(week = week(time)) %>% summarise(value = mean(values))

## # A tibble: 5 × 2
##    week    value
##   <dbl>    <dbl>
## 1     8 37.50000
## 2     9 38.57143
## 3    10 38.57143
## 4    11 36.42857
## 5    12 45.00000

或使用

isoweek
代替:

df2 %>% group_by(week = isoweek(time)) %>% summarise(value = mean(values))

## # A tibble: 4 × 2
##    week    value
##   <int>    <dbl>
## 1     9 37.14286
## 2    10 40.71429
## 3    11 35.00000
## 4    12 42.50000

cut.Date

df2 %>% group_by(week = cut(time, "week")) %>% summarise(value = mean(values))

## # A tibble: 4 × 2
##         week    value
##       <fctr>    <dbl>
## 1 2014-02-24 37.14286
## 2 2014-03-03 40.71429
## 3 2014-03-10 35.00000
## 4 2014-03-17 42.50000

如果您愿意,您可以告诉从周日开始:

df2 %>% group_by(week = cut(time, "week", start.on.monday = FALSE)) %>% 
    summarise(value = mean(values))

## # A tibble: 4 × 2
##         week    value
##       <fctr>    <dbl>
## 1 2014-02-23 37.50000
## 2 2014-03-02 40.00000
## 3 2014-03-09 33.57143
## 4 2014-03-16 44.00000

如果您想转移到周二开始,请在您的日期中添加一个:

df2 %>% group_by(week = cut(time + 1, "week")) %>% summarise(value = mean(values))

## # A tibble: 4 × 2
##         week    value
##       <fctr>    <dbl>
## 1 2014-02-24 37.50000
## 2 2014-03-03 40.00000
## 3 2014-03-10 33.57143
## 4 2014-03-17 44.00000

不过,标签将会被关闭。如果使用

cut
,请考虑其
include.lowest
right
参数的含义,记录于
?cut


10
投票

为什么不直接使用

floor_date
和一个整数来调整一周的开始日期?

library(lubridate)
time <- seq(from =ymd("2014-02-24"),to= ymd("2014-03-20"), by="days")

set.seed(123)

values <- sample(seq(from = 20, to = 50, by = 5), size = length(time), replace = TRUE)  
df2 <- data_frame(time, values)
df2 <- df2 %>% mutate(day_of_week = weekdays(time))

# week wednesday to tuesday
df2 %>% group_by(Week = floor_date(time-3, unit="week")) %>% 
  summarize(WeeklyAveDist=mean(values), mean(values), min_date = min(time), max_date = max(time)) %>% mutate(weekdays(min_date), weekdays(max_date)))

        Week WeeklyAveDist mean.values.   min_date   max_date
1 2014-02-16      37.50000     37.50000 2014-02-24 2014-02-25
2 2014-02-23      38.57143     38.57143 2014-02-26 2014-03-04
3 2014-03-02      38.57143     38.57143 2014-03-05 2014-03-11
4 2014-03-09      36.42857     36.42857 2014-03-12 2014-03-18
5 2014-03-16      45.00000     45.00000 2014-03-19 2014-03-20
  weekdays.min_date. weekdays.max_date.
1             Monday            Tuesday
2          Wednesday            Tuesday
3          Wednesday            Tuesday
4          Wednesday            Tuesday
5          Wednesday           Thursday


# Week Thursday to Wednesday
df2 %>% group_by(Week = floor_date(time-4, unit="week")) %>% 
  summarize(WeeklyAveDist=mean(values), mean(values), min_date = min(time), max_date = max(time)) %>% mutate(weekdays(min_date), weekdays(max_date)))

        Week WeeklyAveDist mean.values.   min_date   max_date
1 2014-02-16      35.00000     35.00000 2014-02-24 2014-02-26
2 2014-02-23      39.28571     39.28571 2014-02-27 2014-03-05
3 2014-03-02      37.14286     37.14286 2014-03-06 2014-03-12
4 2014-03-09      40.00000     40.00000 2014-03-13 2014-03-19
5 2014-03-16      40.00000     40.00000 2014-03-20 2014-03-20
  weekdays.min_date. weekdays.max_date.
1             Monday          Wednesday
2           Thursday          Wednesday
3           Thursday          Wednesday
4           Thursday          Wednesday
5           Thursday           Thursday

2
投票
aggregate(df2$values,by=list(week(df2$time)),mean)
  Group.1        x
1       8 30.00000
2       9 40.00000
3      10 36.42857
4      11 37.85714
5      12 43.33333

这使用 lubridate 的

week
函数并给出一年中的第几周。

要控制一周中的哪一天是开始日,只需参考该主题的此线程:

更改 lubridate 功能以从星期一而不是星期日开始

nograpes 的该线程的解决方案建议,如果您想要使用一周中的任意一天作为一周的开始的

week()
函数的自定义版本,您只需从基本 R 构建它,如下所示:

start.of.week <- function(date)
  date - (setNames(c(6,0:5),0:6) [strftime(date,'%w')])

end.of.week <- function(date)
  date + (setNames(c(0,6:1),0:6) [strftime(date,'%w')])

start.of.week(as.Date(c('2014-01-05','2014-10-02','2014-09-22','2014-09-27')))
# "2013-12-30" "2014-09-29" "2014-09-22" "2014-09-22"
end.of.week(as.Date(c('2014-01-05','2014-10-02','2014-09-22','2014-09-27')))
# "2014-01-05" "2014-10-05" "2014-09-28" "2014-09-28"

将来

lubridate
将在几周内为任意开始日提供此选项,但 Hadley 尚未抽出时间添加它(https://github.com/hadley/lubridate/issues/257)。


1
投票

就这一次,经过一番研究,我实际上认为我想出了一个更好的解决方案

  • 给出正确的聚合
  • 给出正确的标签

下面的示例是从星期四开始的几周。这些周将按照给定周期的第一天进行标记。

library(tidyverse)
library(lubridate)
options(tibble.print_min = 30)

time <- seq(from =ymd("2014-02-24"),to= ymd("2014-03-20"), by="days")
set.seed(123)
values <- sample(seq(from = 20, to = 50, by = 5), size = length(time), replace = TRUE)
df2 <- data_frame(time, values)

df2 <- df2 %>% mutate(day_of_week_label = wday(time, label = TRUE),
                      day_of_week = wday(time, label = FALSE))

df2 <- df2 %>% mutate(thursday_cycle = time - ((as.integer(day_of_week) - 5) %% 7),
                      tmp_1 = (as.integer(day_of_week) - 5),
                      tmp_2 = ((as.integer(day_of_week) - 5) %% 7))

这给出了

> df2
# A tibble: 25 × 7
         time values day_of_week_label day_of_week thursday_cycle tmp_1 tmp_2
       <date>  <dbl>             <ord>       <dbl>         <date> <dbl> <dbl>
1  2014-02-24     30               Mon           2     2014-02-20    -3     4
2  2014-02-25     45              Tues           3     2014-02-20    -2     5
3  2014-02-26     30               Wed           4     2014-02-20    -1     6
4  2014-02-27     50             Thurs           5     2014-02-27     0     0
5  2014-02-28     50               Fri           6     2014-02-27     1     1
6  2014-03-01     20               Sat           7     2014-02-27     2     2
7  2014-03-02     35               Sun           1     2014-02-27    -4     3
8  2014-03-03     50               Mon           2     2014-02-27    -3     4
9  2014-03-04     35              Tues           3     2014-02-27    -2     5
10 2014-03-05     35               Wed           4     2014-02-27    -1     6
11 2014-03-06     50             Thurs           5     2014-03-06     0     0
12 2014-03-07     35               Fri           6     2014-03-06     1     1
13 2014-03-08     40               Sat           7     2014-03-06     2     2
14 2014-03-09     40               Sun           1     2014-03-06    -4     3
15 2014-03-10     20               Mon           2     2014-03-06    -3     4
16 2014-03-11     50              Tues           3     2014-03-06    -2     5
17 2014-03-12     25               Wed           4     2014-03-06    -1     6
18 2014-03-13     20             Thurs           5     2014-03-13     0     0
19 2014-03-14     30               Fri           6     2014-03-13     1     1
20 2014-03-15     50               Sat           7     2014-03-13     2     2
21 2014-03-16     50               Sun           1     2014-03-13    -4     3
22 2014-03-17     40               Mon           2     2014-03-13    -3     4
23 2014-03-18     40              Tues           3     2014-03-13    -2     5
24 2014-03-19     50               Wed           4     2014-03-13    -1     6
25 2014-03-20     40             Thurs           5     2014-03-20     0     0
© www.soinside.com 2019 - 2024. All rights reserved.