制作了一棵 AVL 树,一切都运行良好,直到我用大量插入对其进行了测试。删除具有两个子节点的节点后,“移动”的节点内的数据字段会获得一个奇怪的值。我学到的是 C++ 中一些未定义的行为。我不知道如何去做。我错过了什么?
AVL_Tree.cpp
#include "AVL_Tree.h"
#include "stddef.h"
#include <stdexcept>
#include <iostream>
#include <algorithm>
/*
* Constructor for TreeNode
*/
AVL_Tree::TreeNode::TreeNode(const int& data)
: data(data), height(1), leftChild(NULL), rightChild(NULL){};
void AVL_Tree::TreeNode::printNodeValue()
{
std::cout << data << "\n";
}
void AVL_Tree::TreeNode::printTree(bool isRight, const std::string& indent)
{
if(rightChild != NULL)
{
rightChild->printTree(true, indent + (isRight ? " " : " | "));
}
std::cout << indent;
if(isRight)
{
std::cout << " /";
}
else
{
std::cout << " \\";
}
std::cout << "----- ";
printNodeValue();
if(leftChild != NULL)
{
leftChild->printTree(false, indent + (isRight ? " | " : " "));
}
}
void AVL_Tree::TreeNode::printTree()
{
if(rightChild != NULL)
{
rightChild->printTree(true, "");
}
printNodeValue();
if(leftChild != NULL)
{
leftChild->printTree(false, "");
}
}
/*
* Constructor for the AVL_Tree
*/
AVL_Tree::AVL_Tree()
{
this->root = NULL;
this->size = 0;
}
/**
* Destructor
*/
AVL_Tree::~AVL_Tree()
{
destruct(this->root);
}
/**
* Deletes TreeNode objects recursively
*/
void AVL_Tree::destruct(TreeNode* root)
{
if(root != NULL)
{
destruct(root->rightChild);
destruct(root->leftChild);
delete root;
root = NULL;
}
}
/**
*Removes specified node
*/
void AVL_Tree::deleteNode(const int& data)
{
TreeNode* temp = remove(this->root, data);
if(temp != NULL)
{
this->root = temp;
size--;
}
}
/**
*Adds new node to the tree by calling insert()
*/
void AVL_Tree::add(const int& data)
{
try
{
TreeNode* node = new TreeNode(data);
this->root = insert(this->root, node);
size++;
}
catch(std::string s)
{
std::cout << s << std::endl;
}
}
void AVL_Tree::print()
{
root->printTree();
}
/**
* Prints the tree in ascending order
*/
void AVL_Tree::inOrder(TreeNode* current)
{
if(current != NULL)
{
inOrder(current->leftChild);
std::cout << current->data << std::endl;
inOrder(current->rightChild);
}
}
/**
*Recursively traverse the tree to find the correct place for the new node and then
*returns the tree.
*/
AVL_Tree::TreeNode* AVL_Tree::insert(TreeNode* current, TreeNode* newNode)
{
if(current == NULL)
{
return newNode;
}
if(newNode->data < current->data)
{
current->leftChild = insert(current->leftChild, newNode);
}
else if(newNode->data > current->data)
{
current->rightChild = insert(current->rightChild, newNode);
}
else
{
throw std::string("Data already exist in tree");
}
//return current;
return balance(current);
}
/**
* Recursively finds the TreeNode that matches 'dataToRemove' and erase it from the tree then returns the new tree
*/
AVL_Tree::TreeNode* AVL_Tree::remove(TreeNode* current, const int& dataToRemove)
{
if(current == NULL)
{
return current;
}
if(dataToRemove < current->data)
{
current->leftChild = remove(current->leftChild, dataToRemove);
}
else if(dataToRemove > current->data)
{
current->rightChild = remove(current->rightChild, dataToRemove);
}
else //if(dataToRemove == current->data)
{
TreeNode* temp = NULL;
//No children
if(current->leftChild == NULL && current->rightChild == NULL)
{
delete current;
current = NULL;
}
//One child
else if(current->leftChild != NULL && current->rightChild == NULL)
{
temp = current->leftChild;
current->data = temp->data;
current->leftChild = remove(current->leftChild, temp->data);
}
else if(current->leftChild == NULL && current->rightChild != NULL)
{
temp = current->rightChild;
current->data = temp->data;
current->rightChild = remove(current->rightChild, temp->data);
}
//Two children
else if(current->leftChild != NULL && current->rightChild != NULL)
{
temp = findSuccessor(current->rightChild);
current->data = temp->data;
remove(current->rightChild, temp->data);
}
}
return balance(current);
}
/**
* Returns height of tree
*/
int AVL_Tree::height(TreeNode* current)
{
if(current == NULL)
{
return 0;
}
return current->height;
}
/**
* Returns the balance factor for the argument(TreeNode pointer)
*/
int AVL_Tree::getBalance(TreeNode* current)
{
if(current == NULL)
{
return 0;
}
return height(current->rightChild) - height(current->leftChild);
}
/**
* Sets the height of the specified TreeNode
*/
void AVL_Tree::fixHeight(TreeNode* current)
{
int hl = height(current->leftChild);
int hr = height(current->rightChild);
current->height = (hl > hr ? hl : hr) + 1;
}
/**
* Takes TreeNode pointer as arguement and balances the tree if it isn't NULL
*/
AVL_Tree::TreeNode* AVL_Tree::balance(TreeNode* current)
{
if (current != NULL) {
fixHeight(current);
if(getBalance(current) == 2)
{
if(getBalance(current->rightChild) < 0)
{
current->rightChild = rotateRight(current->rightChild);
}
return rotateLeft(current);
}
if(getBalance(current) == -2)
{
if(getBalance(current->leftChild) > 0)
{
current->leftChild = rotateLeft(current->leftChild);
}
return rotateRight(current);
}
return current;
} else {
return NULL;
}
}
/**
* Preforms a left rotation
* Returns the rotated subtree
*/
AVL_Tree::TreeNode* AVL_Tree::rotateLeft(TreeNode* current)
{
TreeNode* right = current->rightChild;
current->rightChild = right->leftChild;
right->leftChild = current;
fixHeight(current);
fixHeight(right);
return right;
}
/**
* Preforms a right rotation
*/
AVL_Tree::TreeNode* AVL_Tree::rotateRight(TreeNode* current)
{
TreeNode* left = current->leftChild;
current->leftChild = left->rightChild;
left->rightChild = current;
fixHeight(current);
fixHeight(left);
return left;
}
/**
* Takes TreeNode pointer as argument and return the "leftest"(smallest) node in the right subtree.
*/
AVL_Tree::TreeNode* AVL_Tree::findSuccessor(TreeNode* current)
{
while(current->leftChild != NULL)
{
current = current->leftChild;
}
return current;
}
AVL_Tree.h
#ifndef AVLTREE_H
#define AVLTREE_H
#include <string>
class AVL_Tree
{
private:
struct TreeNode
{
TreeNode(const int& data);
int data;
int height;
TreeNode* leftChild;
TreeNode* rightChild;
void printTree(bool isRight, const std::string& indent);
void printTree();
void printNodeValue();
};
int size;
TreeNode* root;
TreeNode* findSuccessor(TreeNode* current);
TreeNode* remove(TreeNode* current, const int& dataToRemove);
TreeNode* insert(TreeNode* current, TreeNode* newNode);
int height(TreeNode* current);
TreeNode* balance(TreeNode* current);
int getBalance(TreeNode* current);
TreeNode* rotateLeft(TreeNode* current);
TreeNode* rotateRight(TreeNode* current);
void fixHeight(TreeNode* current);
void destruct(TreeNode* root);
TreeNode* findMin(TreeNode* current);
TreeNode* removeMin(TreeNode* current);
public:
AVL_Tree();
~AVL_Tree();
void deleteNode(const int& data);
void add(const int& data);
void print();
void inOrder(TreeNode* current);
};
#endif
main.cpp
#include "AVL_Tree.h"
#include <stdlib.h>
#include <vector>
using std::vector;
int main()
{
AVL_Tree at;
vector<int> list;
for(int i = 0; i < 20; i++)
{
int x = rand() % 100;
list.push_back(x);
at.add(x);
}
at.print();
at.add(list[0]);
at.print();
for(int i = 19; i >= 18; i--)
{
at.deleteNode(list[i]);
}
at.print();
return 0;
}
输出
如果数据已存在于您的树中,您的代码将引发异常。调用代码将指针分配给非返回函数。
this->root = insert(this->root, 节点);
使用一些硬编码值测试您的代码,并确保使用重复值进行测试。