我正在使用 R 编程语言。我正在尝试使用以下库来优化我编写的任意函数:https://cran.r-project.org/web/packages/nsga2R/nsga2R.pdf
首先我为此示例创建了一些数据:
#load library
library(dplyr)
library(nsga2R)
#create data for this example
# create some data for this example
a1 = rnorm(1000,100,10)
b1 = rnorm(1000,100,10)
c1 = sample.int(1000, 1000, replace = TRUE)
train_data = data.frame(a1,b1,c1)
然后,我定义了优化函数(7 个输入,4 个输出):
#define function
funct_set <- function (x) {
x1 <- x[1]; x2 <- x[2]; x3 <- x[3] ; x4 <- x[4]; x5 <- x[5]; x6 <- x[6]; x[7] <- x[7]
f <- numeric(4)
#bin data according to random criteria
train_data <- train_data %>%
mutate(cat = ifelse(a1 <= x1 & b1 <= x3, "a",
ifelse(a1 <= x2 & b1 <= x4, "b", "c")))
train_data$cat = as.factor(train_data$cat)
#new splits
a_table = train_data %>%
filter(cat == "a") %>%
select(a1, b1, c1, cat)
b_table = train_data %>%
filter(cat == "b") %>%
select(a1, b1, c1, cat)
c_table = train_data %>%
filter(cat == "c") %>%
select(a1, b1, c1, cat)
#calculate quantile ("quant") for each bin
table_a = data.frame(a_table%>% group_by(cat) %>%
mutate(quant = ifelse(c1 > x[5],1,0 )))
table_b = data.frame(b_table%>% group_by(cat) %>%
mutate(quant = ifelse(c1 > x[6],1,0 )))
table_c = data.frame(c_table%>% group_by(cat) %>%
mutate(quant = ifelse(c1 > x[7],1,0 )))
f[1] = mean(table_a$quant)
f[2] = mean(table_b$quant)
f[3] = mean(table_c$quant)
#group all tables
final_table = rbind(table_a, table_b, table_c)
# calculate the total mean : this is what needs to be optimized
f[4] = mean(final_table$quant)
return (f);
}
然后,我运行优化代码:
#optimization
results <- nsga2R(fn=funct_set, varNo=7, objDim=4, lowerBounds=c(80,80,80,80, 100, 200, 300), upperBounds=c(120,120,120,120,200,300,400),
popSize=50, tourSize=2, generations=50, cprob=0.9, XoverDistIdx=20, mprob=0.1,MuDistIdx=3)
但这会返回以下错误:
Error in if (all(xi <= xj) && any(xi < xj)) { :
missing value where TRUE/FALSE needed
有谁知道产生的错误是否是由于我定义此问题的函数/数据的方式造成的?或者还有其他原因导致此错误产生吗?
谢谢
我最近也遇到了同样的问题。就我而言,这是由于优化函数的返回向量为某些参数组合产生了 NA 值。将以下行添加到优化函数中可能会解决问题:
f = ifelse(is.na(f), Inf, f)