您如何规范具有多索引的熊猫交叉表?
假设您有这样的df:
# RANDOM DATA
np.random.seed(2)
Year = [2020,2019,2018,2017]*1000
col1 = ['A','B','C','D']*1000
col2 = np.random.randint(0,2,4000)
weight = np.random.randint(1,3,4000)
random.shuffle(Year)
random.shuffle(col1)
random.shuffle(col2)
random.shuffle(weight)
column_names = ['Year', 'weight', 'col1', 'col2']
df = pd.DataFrame(columns=column_names)
df['Year'] = Year
df['col1'] = col1
df['col2'] = col2
df['weight'] = weight
现在您可以执行交叉表:
pd.crosstab(index=[df['Year']],
columns=[df['col1'], df['col2']],
values=df['weight'],
aggfunc=sum)
col1 A B C D \
col2 0 1 0 1 0 1 0
Year
2017 0.117962 0.128686 0.128016 0.130697 0.137399 0.122654 0.115282
2018 0.116832 0.111551 0.120132 0.118152 0.138614 0.125413 0.131353
2019 0.137584 0.126846 0.127517 0.108725 0.114765 0.138255 0.114765
2020 0.116356 0.134309 0.113032 0.143617 0.121676 0.118351 0.121676
col1
col2 1
Year
2017 0.119303
2018 0.137954
2019 0.131544
2020 0.130984
您如何在多索引中规范化?
我的预期输出是:
col1 A A B B C C D D
col2 0 1 0 1 0 1 0 1
Year
2017 0.478 0.522 0.495 0.505 0.528 0.472 0.491 0.509
2018 0.512 0.488 0.504 0.496 0.525 0.475 0.488 0.512
2019 0.520 0.480 0.540 0.460 0.454 0.546 0.466 0.534
2020 0.464 0.536 0.440 0.560 0.507 0.493 0.482 0.518
我认为您可以将groupby().value_counts
用于规范化:
#### Random data ####
np.random.seed(2)
Year = [2020,2019,2018,2017]*1000
col1 = np.repeat(['A','B','C','D'],1000)
col2 = np.random.randint(0,2,4000)
column_names = ['Year', 'col1', 'col2']
df = pd.DataFrame(columns=column_names)
df['Year'] = Year
df['col1'] = col1
df['col2'] = col2
#### End random data ####
(df.groupby(['Year','col1'])['col2']
.value_counts(normalize=True)
.unstack(['col1','col2'])
)
输出:
col1 A B C D
col2 0 1 1 0 0 1 1 0
Year
2017 0.524 0.476 0.528 0.472 0.540 0.460 0.512 0.488
2018 0.496 0.504 0.484 0.516 0.560 0.440 0.524 0.476
2019 0.496 0.504 0.552 0.448 0.484 0.516 0.508 0.492
2020 0.500 0.500 0.540 0.460 0.436 0.564 0.484 0.516
更新:对于加权的value_counts
:
new_df = df.groupby(['Year','col1','col2'])['weight'].sum()
new_df /= new_df.sum(level=['Year','col1'])
new_df = new_df.unstack(['col1','col2'])
输出:
col1 A B C D \
col2 0 1 0 1 0 1 0
Year
2017 0.441176 0.558824 0.542500 0.457500 0.474286 0.525714 0.482857
2018 0.500000 0.500000 0.474114 0.525886 0.481268 0.518732 0.489461
2019 0.521622 0.478378 0.474490 0.525510 0.498801 0.501199 0.531343
2020 0.493671 0.506329 0.479339 0.520661 0.515789 0.484211 0.513021
col1
col2 1
Year
2017 0.517143
2018 0.510539
2019 0.468657
2020 0.486979