我一直致力于将用Lasagne编写的CNN转换为Keras(链接到Lasagne版本:https://github.com/MTG/DeepConvSep/blob/master/examples/dsd100/trainCNN.py)我相信我已经把大部分内容都删掉了,但是,损失函数是我正在努力重写的部分。
网络的输出具有形状(32,513,30,4),并且损失函数使用不同的层(最后的暗淡)。我试图将其重写为自定义丢失函数,我可以将其插入到model.compile()这里是我编写的代码:
rand_num = np.random.uniform(size=(32,513,30,1))
epsilon=1e-8
alpha=0.001
beta=0.01
beta_voc=0.03
def loss_func(y_true, y_pred):
global alpha, beta, beta_voc, rand_num
voc = y_pred[:,:,:,0:1] + epsilon * rand_num
bass = y_pred[:,:,:,1:2] + epsilon * rand_num
dru = y_pred[:,:,:,2:3] + epsilon * rand_num
oth = y_pred[:,:,:,3:4] + epsilon * rand_num
mask_vox = voc/(voc+bass+dru+oth)
mask_bass = bass/(voc+bass+dru+oth)
mask_drums = dru/(voc+bass+dru+oth)
mask_oth = oth/(voc+bass+dru+oth)
vocals = mask_vox * inp
bass = mask_bass * inp
drums = mask_drums * inp
other = mask_oth * inp
train_loss_vocals = mean_squared_error(y_true=y_true[:,:,:,0:1],y_pred=vocals)
alpha_component = alpha*mean_squared_error(y_true=y_true[:,:,:,1:2],y_pred=vocals)
alpha_component += alpha*mean_squared_error(y_true=y_true[:,:,:,2:3],y_pred=vocals)
train_loss_recon_neg_voc = beta_voc*mean_squared_error(y_true=y_true[:,:,:,3:4],y_pred=vocals)
train_loss_bass = mean_squared_error(y_true=y_true[:,:,:,1:2],y_pred=bass)
alpha_component += alpha*mean_squared_error(y_true=y_true[:,:,:,0:1],y_pred=bass)
alpha_component += alpha*mean_squared_error(y_true=y_true[:,:,:,2:3],y_pred=bass)
train_loss_recon_neg = beta*mean_squared_error(y_true=y_true[:,:,:,3:4],y_pred=bass)
train_loss_drums = mean_squared_error(y_true=y_true[:,:,:,2:3],y_pred=drums)
alpha_component += alpha*mean_squared_error(y_true=y_true[:,:,:,0:1],y_pred=drums)
alpha_component += alpha*mean_squared_error(y_true=y_true[:,:,:,1:2],y_pred=drums)
train_loss_recon_neg += beta*mean_squared_error(y_true=y_true[:,:,:,3:4],y_pred=drums)
vocals_error=train_loss_vocals.sum()
drums_error=train_loss_drums.sum()
bass_error=train_loss_bass.sum()
negative_error=train_loss_recon_neg.sum()
negative_error_voc=train_loss_recon_neg_voc.sum()
alpha_component=alpha_component.sum()
loss=abs(vocals_error+drums_error+bass_error-negative_error-alpha_component-negative_error_voc)
return loss
我得到的第一个错误是:
AttributeError:'Tensor'对象没有属性'sum'
但是,我不确定其他一些操作,即使是不正确的操作,也会引发错误。
我真的很感激一些帮助。谢谢。
例如,参见this关于如何在Keras中定义自定义损失的示例。
y_pred
是Keras模型的输出是张量。你必须调整你的操作以适应张量,所以你不得不使用np.sum
而不是kazxswpoi,而K是你的keras后端。
一些运算符过载,因此您可以使用K.sum
添加两个张量。