如何将多个列转换为R中各行

问题描述 投票:5回答:2

我在R 2与F0(基波频率)在它的一个发声的磁道的数据帧,其具有许多行(3000)。行中都有以下信息:扬声器ID,组#,重复#,语调类型,性别,然后50 F0点的列。数据是这样的:

Speaker Sex Group Repetition Accent    Word         1         2         3        4
    105   M     1          1      N AILMENT 102.31030 102.31030 102.31030 102.31127 
    105   M     1          1      N COLLEGE 111.80641 111.80313 111.68612 111.36020
    105   M     1          1      N  FATHER 124.06655 124.06655 124.06655 124.06655 

但是,而不是只会X4,它具有每行50个点,所以我有一个3562x56数据帧。我想每列数据(,文字经过这么1:50),以改变它,在F0轨道都有自己的专栏,与相关联的列数为另一行。我希望将所有的前6列,其中每一数据点的信息一样,所以它看起来是这样的:

Speaker Sex Group Repetition Accent    Word       Num        F0
    105   M     1          1      N AILMENT         1 102.31030
    105   M     1          1      N AILMENT         2 102.31030
    105   M     1          1      N AILMENT         3 102.31030
    105   M     1          1      N AILMENT         4 102.31127
    ...
    105   M     1          1      N COLLEGE         1 111.80641 
    105   M     1          1      N COLLEGE         1 111.80313 
    105   M     1          1      N COLLEGE         1 111.68612 
    105   M     1          1      N COLLEGE         1 111.36020 
    ...

该代码我试图用,而繁琐的,如下:

x = 1
for (i in 1:dim(normrangef0)[1]) {
     for (j in 1:50) {
             norm.all$Speaker[x] <- normrangef0$Speaker[i]
             norm.all$Sex[x] <- normrangef0$Sex[i]
             norm.all$Group[x] <- normrangef0$Group[i]
             norm.all$Repetition[x] <- normrangef0$Repetition[i]
             norm.all$Word[x] <- normrangef0$Word[i]
             norm.all$Accent[x] <- normrangef0$Accent[i]
             norm.all$Time[x] <- j
             norm.all$F0[x] <- normrangef0[i,j+6]
             x = x+1    
    }
}

然而,我这样做与norm.all作为NULL对象时(刚通过norm.all = C()定义),我结束了超过20万的物品,其中有许多是的NA的列表。当我定义norm.all作为数据帧(一个空一个或全部为0的一个,在178100x8数据帧,我得到一个错误:

误差在$<-.data.frame*tmp*, “扬声器”,值= 105L):更换具有1行,数据具有0

是我的代码只是完全关闭?是否有另一种方式做到这一点?

r rows multiple-columns reshape
2个回答
9
投票

从“reshape2”使用melt

library(reshape2)
melt(mydf, id.vars=c("Speaker", "Sex", "Group", "Repetition", "Accent", "Word"))
#    Speaker Sex Group Repetition Accent    Word variable    value
# 1      105   M     1          1      N AILMENT        1 102.3103
# 2      105   M     1          1      N COLLEGE        1 111.8064
# 3      105   M     1          1      N  FATHER        1 124.0666
# 4      105   M     1          1      N AILMENT        2 102.3103
# 5      105   M     1          1      N COLLEGE        2 111.8031
# 6      105   M     1          1      N  FATHER        2 124.0666
# 7      105   M     1          1      N AILMENT        3 102.3103
# 8      105   M     1          1      N COLLEGE        3 111.6861
# 9      105   M     1          1      N  FATHER        3 124.0666
# 10     105   M     1          1      N AILMENT        4 102.3113
# 11     105   M     1          1      N COLLEGE        4 111.3602
# 12     105   M     1          1      N  FATHER        4 124.0666

在基R,也可以使用stack堆叠命名1至4中的列,以及cbind与第一组列。另外,unlist也将这样做。


您可能还需要寻找到了“data.table”包变得有点提升速度的。


3
投票

随着reshape

x <- read.table(header=T, text="Speaker Sex Group Repetition Accent    Word         1         2         3        4
105   M     1          1      N AILMENT 102.31030 102.31030 102.31030 102.31127
105   M     1          1      N COLLEGE 111.80641 111.80313 111.68612 111.36020
105   M     1          1      N  FATHER 124.06655 124.06655 124.06655 124.06655")

reshape(x, direction="long", sep='', varying=paste0('X', 1:4))
##     Speaker Sex Group Repetition Accent    Word time        X id
## 1.1     105   M     1          1      N AILMENT    1 102.3103  1
## 2.1     105   M     1          1      N COLLEGE    1 111.8064  2
## 3.1     105   M     1          1      N  FATHER    1 124.0666  3
## 1.2     105   M     1          1      N AILMENT    2 102.3103  1
## 2.2     105   M     1          1      N COLLEGE    2 111.8031  2
## 3.2     105   M     1          1      N  FATHER    2 124.0666  3
## 1.3     105   M     1          1      N AILMENT    3 102.3103  1
## 2.3     105   M     1          1      N COLLEGE    3 111.6861  2
## 3.3     105   M     1          1      N  FATHER    3 124.0666  3
## 1.4     105   M     1          1      N AILMENT    4 102.3113  1
## 2.4     105   M     1          1      N COLLEGE    4 111.3602  2
## 3.4     105   M     1          1      N  FATHER    4 124.0666  3
最新问题
© www.soinside.com 2019 - 2025. All rights reserved.