Face API Python SDK“图像大小太小”(PersonGroupPerson add_face_from_stream)

问题描述 投票:1回答:1

首先,文档here说:“支持JPEG,PNG,GIF(第一帧)和BMP格式。允许的图像文件大小为1KB至6MB。”

我正在发送一个〜1.4 MB的.jpg在我的搜索中,遇到此问题的其他人是自定义形成数据包,并遇到了传输图像的问题。但是,与others不同,我没有形成自己的API调用,只是将jpg传递给python sdk。出了什么问题/我想念什么?

错误是:

getting image, start time
opening image:  2019_11_30_18_40_21.jpg
time elapsed for capturing image: 8.007975816726685
time elapsed for detecting image: 0.0017137527465820312
appending face found in image
identifying face
time elapsed for identifying image: 0.8008027076721191
Person for face ID e7b2c3fe-6a62-471f-8371-8c1e96608362 is identified in 2019_11_30_18_40_21.jpg with a confidence of 0.68515.
Traceback (most recent call last):
File "./GreeterCam_V0.1 - testing.py", line 116, in <module>
face_client.person_group_person.add_face_from_stream(PERSON_GROUP_ID, face.candidates[0].person_id, image)
File "/home/pi/.local/lib/python3.7/site-packages/azure/cognitiveservices/vision/face/operations/_person_group_person_operations.py", line 785, in add_face_from_stream
raise models.APIErrorException(self._deserialize, response)
azure.cognitiveservices.vision.face.models._models_py3.APIErrorException: (InvalidImageSize) Image size is too small.  

我的源代码是:

if __name__ == '__main__':
    FRAMES_PER_SECOND = 0.13
    ENDPOINT = os.environ['COGNITIVE_SERVICE_ENDPOINT']
    KEY = os.environ['COGNITIVE_SERVICE_KEY']
    face_client = FaceClient(ENDPOINT, CognitiveServicesCredentials(KEY))
    PERSON_GROUP_ID = 'my-unique-person-group'
    #IMAGES_FOLDER = os.path.join(os.path.dirname(os.path.realpath(__file__)))
    #camera = PiCamera()
    #camera.start_preview()
    test_images = [file for file in glob.glob('*.jpg')]
    #webcam = cv2.VideoCapture(0)
    while(True):
        start_time = time.time()
        print('getting image, start time')
        for image_name in test_images:
            image = open(image_name, 'r+b')
            print("opening image: ", image_name)
            time.sleep(5)
            faces = face_client.face.detect_with_stream(image)     
            #image = open(os.path.join(IMAGES_FOLDER, imageName), 'r+b')
            face_ids = []
            time1 = time.time()
            print('time elapsed for capturing image: ' + str(time1-start_time))
            # detect faces in image

            time2 = time.time()
            print('time elapsed for detecting image: ' + str(time2-time1))
            for face in faces:
                print('appending face found in image')
                face_ids.append(face.face_id)
            if face_ids:
                print('identifying face')
                # if there are faces, identify person matching face
                results = face_client.face.identify(face_ids, PERSON_GROUP_ID)
                time3 = time.time()
                print('time elapsed for identifying image: ' + str(time3-time2))
                name = 'person-created-' + str(time.strftime("%Y_%m_%d_%H_%M_%S"))
                if not results:
                    #if there are no matching persons, make a new person and add face
                    print('No person in the person group for faces from {}.'.format(imageName))
                    new_person = face_client.person_group_person.create(PERSON_GROUP_ID, name)
                    face_client.person_group_person.add_face_from_stream(PERSON_GROUP_ID, new_person.person_id, image)
                    time4 = time.time()
                    print('time elapsed for creating new person: ' + str(time4-time3))
                    print('New Person Created: {}'.format(new_person.person_id))
                for face in results:
                    if not face.candidates:
                        new_person = face_client.person_group_person.create(PERSON_GROUP_ID, name)
                        face_client.person_group_person.add_face_from_stream(PERSON_GROUP_ID, new_person.person_id, image)
                    else:
                        #add face to person if match was found
                        print('Person for face ID {} is identified in {} with a confidence of {}.'.format(face.face_id, os.path.basename(image.name), face.candidates[0].confidence)) # Get topmost confidence score
                        face_client.person_group_person.add_face_from_stream(PERSON_GROUP_ID, face.candidates[0].person_id, image)
                        time4 = time.time()
                        print('time elapsed for creating new person: ' + str(time4-time3))   

这也是在pi 3B(+?)上的Raspbian上

python azure microsoft-cognitive face-recognition face-api
1个回答
1
投票

我在一边运行您的代码,并遇到相同的错误。代码中的image参数似乎有问题:

face_client.person_group_person.add_face_from_stream(PERSON_GROUP_ID, face.candidates[0].person_id, image)

在阶段:

#如果找到匹配项,将人脸相向

当我将此行代码更改为:

face_client.person_group_person.add_face_from_stream(PERSON_GROUP_ID, face.candidates[0].person_id, open(image_name,"r+b"))

问题已解决,已成功将面孔添加到一个人(此人之前有1张面孔:]

![enter image description here

希望有帮助。

© www.soinside.com 2019 - 2024. All rights reserved.